Project description:Plant cells contain different O-acetylserine(thiol)lyase (OASTL) enzymes involved in Cys biosynthesis and located in different subcellular compartments. These enzymes are made up of a complex variety of isoforms resulting in different subcellular Cys pools. To unravel the contribution of cytosolic Cys to plant metabolism, we characterized the knockout oas-a1.1 and osa-a1.2 mutants, deficient in the most abundant cytosolic OASTL isoform in Arabidposis thaliana. Total intracellular Cys and glutathione concentrations were reduced, and the glutathione redox state was shifted in favour of its oxidized form. Interestingly, the capability of the mutants to chelate heavy metals did not differ from that of the wild type, but the mutants have an enhanced sensitivity to Cd. With the aim of establishing the metabolic network most influenced by the cytosolic Cys pool, we used the ATH1 GeneChip for evaluation of differentially expressed genes in the oas-a1.1 mutant grown under non-stress conditions. The transcriptomic footprints of mutant plants had predicted functions associated with various physiological responses that are dependent on reactive oxygen species and suggested that the mutant was oxidatively stressed. To further elucidate the specific function(s) of the OAS-A1 isoform in the adaptation response to cadmium we extended the trasncriptome experiment to the wild type and oas-a1.1 mutant plants exposed to Cd. The comparison of transcriptomic profiles showed a higher proportion of genes with altered expression in the mutant than in the wild type, highlighting up-regulated genes identified as of the general oxidative stress response rather than metal-responsive genes. Wild type and oas-a1.1 mutant plants were grown hydroponically and, after a two-week acclimation period, the roots and shoots were harvested separately. Total RNA was then prepared and analyzed using the Affymetrix-Arabidopsis ATH1GeneChip array. Three biological replicates were performed for each sample. We made two different comparisons to classify the differently expressed genes in the mutant plant: oas-a1.1 roots versus wild-type roots and oas-a1.1 shoots versus wild-type shoots. Hydroponically-grown wild type and oas-a1.1 mutant plants were further treated with 50µM CdCl2 and 18h-treated-roots and 24h-treated-shoots were harvested. Total RNA was then prepared and analyzed using the Affymetrix-Arabidopsis ATH1GeneChip array. Three biological replicates were performed for each sample. Different comparisons were performed as follows: 18h Cd-treated wild type roots versus untreated wild type roots; 24h Cd-treated wild type shoots versus untreated wild type shoots; 18h Cd-treated oas-a1.1 roots versus untreated oas-a1.1 roots; 24h Cd-treated oas-a1.1 shoots versus untreated oas-a1.1 shoots; 18h Cd-treated oas-a1.1 roots versus 18h Cd-treated wild type roots; 24h Cd-treated oas-a1.1 shoots versus 24h Cd-treated wild type shoots
Project description:Plants reorganize their root architecture to avoid growth into unfavorable regions of the rhizosphere. In a screen based on chimeric repressor gene-silencing technology, we identified the Arabidopsis thaliana GeBP-LIKE 4 (GPL4) transcription factor as an inhibitor of root growth that is induced rapidly in root tips in response to cadmium (Cd). We tested the hypothesis that GPL4 functions in the root avoidance of Cd by analyzing root proliferation in split medium, in which only half of the medium contained toxic concentrations of Cd. The wild-type (WT) plants exhibited root avoidance by inhibiting root growth in the Cd side but increasing root biomass in the control side. By contrast, GPL4-suppression lines exhibited nearly comparable root growth in the Cd and control sides and accumulated more Cd in the shoots than did the WT. GPL4 suppression also altered the root avoidance of toxic concentrations of other essential metals, modulated the expression of many genes related to oxidative stress, and consistently decreased reactive oxygen species concentrations. We suggest that GPL4 inhibits the growth of roots exposed to toxic metals by modulating reactive oxygen species concentrations, thereby allowing roots to colonize noncontaminated regions of the rhizosphere.thereby re-allocating root biomass toward non-contaminated rhizosphere areas and minimizing root exposure to toxic metals.
Project description:Cadmium treatment induces slow but long lasting nitric oxide production in plant tissues. This NO production can be suppressed using the commonly used Nitric Oxide Synthase inhibitor L-NAME. This inhibitor tends to partially alleviate Cd toxicity. This effect is correlated with a strong diminution of Cd content in roots of plants treated both with Cd and L-NAME compared to roots from plants treated with Cd only. The main goal of this study is the identification of transcriptionnal changes caused by Cd-induced nitric oxide, and that could potentially result in enhanced Cd root accumulation.
Project description:To massively identify genes that are up-regulated by Cd and in particular transporter genes which might transport peptides or oligopeptides. Four week old hydroponically-grown Col-0 plants were treated with/without 200uM Cd for 6 hours. Total RNA was extracted from roots and subjected to hybridization with Affymetrix ATH1 microarrays.
Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.
Project description:14 day old hydroponically grown Arabidopsis roots were exposed to 25uM AlCl3 in 200uM CaCl2 basal medium (pH 4.3) with or without AlCl3 to detect any changes at transcript level that differed from control plants after 6h or 48h of treatment.
Project description:Background: The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. The objective of this work is to understand responses in plants along with interactive effect of elevated CO2 and Mg levels by comparing data on single stress with that of combined stresses. Results: This study investigated the influence of elevated CO2 (800 μL L−1) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased leaf number but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Elevated CO2 decreased the expression of genes related to cadmium response, cell redox homeostasis and lipid localization, but enhanced photosynthesis, signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. Conclusions: Contrasting changes were found between roots and shoots with the shoot transcriptome being more severely affected by low Mg while the root transcriptome more affected by high Mg. Elevated CO2 had a greater effect on transcript response in low Mg-fed shoots as well as in high Mg-fed roots. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2.
Project description:Background: Heavy metal cadmium (Cd) is a common environmental pollutant in soils, which has an negative impacts on crop growth and development. At present, cadmium has become a major soil and water heavy metal pollutant, which not only causes permanent and irreversible health problems for humans, but also causes a significant reduction in crop yields. Results: This study examined the chemical forms of Cd in the roots of two wheat varieties (M1019 and Xinong20) by continuous extraction and analyzed differences in distribution characteristics of Cd in the root cell wall, cytoplasm, and organelles by elemental content determination and subcellular separation. Furthermore, we conducted proteomics analysis of the roots of the two varieties under Cd pollution using mass spectrometry quantitative proteomics techniques. A total of 11,651 proteins were identified, of which 10,532 proteins contained quantitative information. In addition, the differentially expressed proteins in the two varieties were related to DNA replication and repair, protein metabolism, and the glutathione metabolism pathway. Conclusion: The results of this study improve our understanding of the mechanism of plant responses to Cd stress.