Project description:Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence-absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC - species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias - species model: 1.31 and -0.58, subspecies model: 1.44 and -0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070-2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate change. A key future research challenge lies in assessing the extent to which species can utilize intraspecific variation under rapid environmental change.
Project description:Background and aimsTuberculate ectomycorrhizae are a unique form of ectomycorrhiza where densely packed clusters of mycorrhizal root tips are enveloped by a thick hyphal sheath to form a tubercle. The functional significance of such a unique structure has not previously been established. The purpose of the present study was to investigate and measure the potential nitrogenase activity associated with Suillus tomentosus/Pinus contorta tuberculate ectomycorrhizae in two stand ages, young and old, and across a range of nitrogen-poor soil conditions.MethodsShort roots were compared with other mycorrhizae and non-mycorrhizal secondary roots using tuberculate ectomycorrhizae. Assessment of nitrogenase activity was determined and quantitative measurements were taken on tuberculate ectomycorrhizae in situ in a variety of different circumstances, by using an adaptation of the acetylene reduction assay.Key resultsSignificant nitrogenase activity was measured associated with S. tomentosus/P. contorta tuberculate ectomycorrhizae whereas no nitrogenase activity was measured with non-tuberculate mycorrhizae or secondary roots without mycorrhizae. Average nitrogenase activity ranged from undetectable to 5696.7 nmol C2H4 g(-1) tubercle 24 h(-1). Maximum nitrogenase activity was 25,098.8 nmol C2H4 g(-1) tubercle 24 h(-1). Nitrogenase activity was significantly higher in young stands than in old stands of P. contorta. Season or some covariate also seemed to affect nitrogenase activity and there was suggestion of a site effect.ConclusionsSuillus tomentosus/P. contorta tuberculate ectomycorrhizae are sites of significant nitrogenase activity. The nitrogenase activity measured could be an important contribution to the nitrogen budget of P. contorta stands. Season and stand age affect levels of nitrogenase activity.
Project description:Plant invasions can change soil biota and nutrients in ways that drive subsequent plant communities, particularly when co-invading with belowground mutualists such as ectomycorrhizal fungi. These effects can persist following removal of the invasive plant and, combined with effects of removal per se, influence subsequent plant communities and ecosystem functioning. We used field observations and a soil bioassay with multiple plant species to determine the belowground effects and post-removal legacy caused by invasion of the non-native tree Pinus contorta into a native plant community. Pinus facilitated ectomycorrhizal infection of the co-occurring invasive tree, Pseudotsuga menziesii, but not conspecific Pinus (which always had ectomycorrhizas) nor the native pioneer Kunzea ericoides (which never had ectomycorrhizas). Pinus also caused a major shift in soil nutrient cycling as indicated by increased bacterial dominance, NO3-N (17-fold increase) and available phosphorus (3.2-fold increase) in soils, which in turn promoted increased growth of graminoids. These results parallel field observations, where Pinus removal is associated with invasion by non-native grasses and herbs, and suggest that legacies of Pinus on soil nutrient cycling thus indirectly promote invasion of other non-native plant species. Our findings demonstrate that multi-trophic belowground legacies are an important but hitherto largely unconsidered factor in plant community reassembly following invasive plant removal.
Project description:A population of eight open pollinated families of Pinus contorta was selected from sites varying in precipitation regimes and elevation to examine the possible role of aquaporins in adaptation to different moisture conditions. Five Pinus contorta aquaporins encoding PiconPIP2;1, PiconPIP2;2, PiconPIP2;3, PiconPIP1;2, and PiconTIP1;1 were cloned and detailed structural analyses were conducted to provide essential information that can explain their biological and molecular function. All five PiconAQPs contained hydrophilic aromatic/arginine selective filters to facilitate the transport of water. Transcript abundance patterns of PiconAQPs varied significantly across the P. contorta families under varying soil moisture conditions. The transcript abundance of five PiconPIPs remained unchanged under control and water-stress conditions in two families that originated from the sites with lower precipitation levels. These two families also displayed a different adaptive strategy of photosynthesis to cope with drought stress, which was manifested by reduced sensitivity in photosynthesis (maintaining the same rate) while exhibiting a reduction in stomatal conductance. In general, root:shoot ratios were not affected by drought stress, but some variation was observed between families. The results showed variability in drought coping mechanisms, including the expression of aquaporin genes and plant biomass allocation among eight families of Pinus contorta.