Project description:Genome wide DNA methylation profiling of androgen-sensitive and –refractory prostate cancer cells. The Illumina Infinium HumanMethylation450 Beadchip was used to obtain DNA methylation profiles across approximately 480.000 CpGs in Prostate cancer cell lines showing different sensitivity to hormonal treatments. Samples included the androgen receptor negative cell lines PC3 and DU145, the androgen sensitive cell line LNCaP and the LNCaP abl cell line expressing androgen receptor but refractory prostate cancer cell line to hormonal treatments.
Project description:We generated and characterized an androgen-independent LNCaP-AI cell line by long-term culture of androgen-dependent LNCaP cells in RPMI-1640 medium containing charcoal-stripped serum. This approach used to generate the line mimics the castration resistant condition for treating prostate cancer, supporting the relevance of the LNCAP-AI cell line to Castration Resistant Prostate Cancer.
Project description:The androgen receptor is considered as the key promoter of prostate cancer. It is a transcription factor that controls the transcription of hundreds of its target genes. In this project we focuses on how androgen receptor stimulation by the synthetic androgen R1881 can affect the proteome of peroxiosmes and the antioxidant enzymes in LNCaP cells.
Project description:Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified androgen-regulated long non-coding RNA, CTBP1-AS, located in the antisese region of CTBP1 gene. CTBP1-AS activate AR signaling by epigenetically repress AR-associated cofactors such as CTBP1 by interactign with RNA-binding protein PSF and recruiting HDAC complex to the target promoters. In order investigated the PSF target genes, we performed ChIP-seq analysis of PSF binding sites in prostate cancer cell line, LNCaP cells. We identified androgen dependent PSF binding regions in prostate cancer cell genome. We observed PSF bindings around the promoters of androgen repressed genes such as CTBP1, p53 and SMAD3.
Project description:Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified androgen-regulated long non-coding RNA, CTBP1-AS, located in the antisese region of CTBP1 gene. CTBP1-AS activate AR signaling by epigenetically repress AR-associated cofactors such as CTBP1 by interactign with RNA-binding protein PSF and recruiting HDAC complex to the target promoters. In order investigated the PSF target genes, we performed ChIP-seq analysis of PSF binding sites in prostate cancer cell line, LNCaP cells. We identified androgen dependent PSF binding regions in prostate cancer cell genome. We observed PSF bindings around the promoters of androgen repressed genes such as CTBP1, p53 and SMAD3. ChIP-sequence analysis of PSF binding sites in prostate cancer cells
Project description:High levels of GLI (GLI1 and GLI2) mRNA and GLI luciferase reporter activity were detected in the androgen independent prostate cancer cell lines DU145 and PC-3 compared to the androgen-dependent LNCaP prostate cancer cell line. Subsequently, we observed that ectopic GLI1 promoted hormone independence in LNCaP cells (LNCaP-GLI1). We compared the gene expression profile of LNCaP-pBP (empty vector), LNCaP-GLI1, DU145, and PC-3 cells globally as well as to identify GLI1-regulated genes that may contribute to hormone independence.
Project description:We report that the adaptor protein, paxillin, regulates some androgen responsive genes in the castration sensitive prostate cancer cell line, LNCaP.
Project description:Although the vital role of the androgen receptor (AR) has been well demonstrated in primary prostate cancers, its role in the androgen-insensitive prostate cancers still remains unclear. Here, we used a small hairpin RNA approach to directly assess AR activity in prostate cancer cells. Reduction of AR expression in the two androgen-sensitive prostate cancer cell lines, LNCaP and LAPC4, significantly decreased AR-mediated transcription and cell growth. Intriguingly, in two androgen-insensitive prostate cell lines, LNCaP-C42B4 and CWR22Rv1, knockdown of AR expression showed a more pronounced effect on AR-induced transcription and cell growth than androgen depletion. Using cDNA microarrays, we also compared the transcriptional profiles induced by either androgen depletion or AR knockdown. Although a significant number of transcripts appear to be regulated by both androgen depletion and AR knockdown, we observed a subset of transcripts affected only by androgen depletion but not by AR knockdown, and vice versa. Finally, we demonstrated a direct role for AR in promoting tumor formation and growth in a xenograft model. Taken together, our results elucidate an important role for the AR in androgen-insensitive prostate cancer cells, and suggest that AR can be used as a therapeutic target for androgen-insensitive prostate cancers.
Project description:The transcription factor and RNA-interacting Y-box binding protein-1 (YB-1 protein, YBX1 gene) has gained interest as a prognostic biomarker and therapeutic target in various malignancies including prostate cancer. Using a custom prostate-cancer-focussed microarray platform, we have established a transcriptome-wide profile of YB-1 target transcripts in the androgen sensitive prostate cancer cell line LNCaP.
Project description:The transcription factor and RNA-interacting Y-box binding protein-1 (YB-1 protein, YBX1 gene) has gained interest as a prognostic biomarker and therapeutic target in various malignancies including prostate cancer. Using a custom prostate-cancer-focussed microarray platform, we have established a transcriptome-wide profile of YB-1 target transcripts in the androgen sensitive prostate cancer cell line LNCaP.