Project description:Seizures that occur during early development are associated with adverse neurodevelopmental outcomes. Causation and mechanisms are currently under investigation. Induction of an early life seizure by kainic acid (KA) in immature rats on post-natal day (P) 7 results in behavioral changes in the adult rat that reflect social and intellectual deficits without overt cellular damage. Our previous work also demonstrated increased expression of CA1 hippocampal long-term potentiation (LTP) and reduced desensitization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors (AMPA-R) one week following a kainic acid induced seizure (KA-ELS). Here we used RNA sequencing (RNAseq) of mRNA from dorsal hippocampal CA1 to probe changes in mRNA levels one week following KA-ELS as a means to investigate the mechanisms for these functional changes. Ingenuity pathway analysis (IPA) confirmed our previous results by predicting an up-regulation of the synaptic LTP pathway. Differential gene expression results revealed significant differences in 7 gene isoforms. Additional assessments included AMPA-R splice variants and adenosine deaminase acting on RNA 2 (ADAR2) editing sites as a means to determine the mechanism for reduced AMPA-R desensitization. Splice variant analysis demonstrated that KA-ELS result in a small, but significant decrease in the "flop" isoform of Gria3, and editing site analysis revealed significant changes in the editing of a kainate receptor subunit, Grik2, and a serotonin receptor, Htr2c. While these specific changes may not account for altered AMPA-R desensitization, the differences indicate that KA-ELS alters gene expression in the hippocampal CA1 one week after the insult.
Project description:Neural plasticity requires protein synthesis, but the identity of newly synthesized proteins generated in response to plasticity-inducing stimuli remains unclear. We used in vivo bio-orthogonal noncanonical amino acid tagging (BONCAT) with the methionine analog azidohomoalanine (AHA) combined with the multidimensional protein identification technique (MudPIT) to identify proteins that are synthesized in the tadpole brain over 24 hr. We induced conditioning-dependent plasticity of visual avoidance behavior, which required N-methyl-D-aspartate (NMDA) and Ca(2+)-permeable alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, alphaCaMKII, and rapid protein synthesis. Combining BONCAT with western blots revealed that proteins including alphaCaMKII, MEK1, CPEB, and GAD65 are synthesized during conditioning. Acute synthesis of CPEB during conditioning is required for behavioral plasticity as well as conditioning-induced synaptic and structural plasticity in the tectal circuit. We outline a signaling pathway that regulates protein-synthesis-dependent behavioral plasticity in intact animals, identify newly synthesized proteins induced by visual experience, and demonstrate a requirement for acute synthesis of CPEB in plasticity.
Project description:The nervous system plays an increasingly appreciated role in the regulation of cancer. In gliomas, neuronal activity drives tumor progression through paracrine signaling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. The consequent glioma cell membrane depolarization drives tumor proliferation. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity and strength. Here, we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signaling through the receptor TrkB (tropomyosin receptor kinase B), BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity that contributes to memory and learning in the healthy brain. BDNF-TrkB signaling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of TrkB in human glioma cells robustly inhibits tumor progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of pediatric glioblastoma and diffuse intrinsic pontine glioma (DIPG). Taken together, these findings indicate that BDNF-TrkB signaling promotes malignant synaptic plasticity and augments tumor progression.
Project description:The nervous system plays an increasingly appreciated role in the regulation of cancer. In gliomas, neuronal activity drives tumor progression through paracrine signaling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. The consequent glioma cell membrane depolarization drives tumor proliferation. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity and strength. Here, we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signaling through the receptor TrkB (tropomyosin receptor kinase B), BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity that contributes to memory and learning in the healthy brain. BDNF-TrkB signaling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of TrkB in human glioma cells robustly inhibits tumor progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of pediatric glioblastoma and diffuse intrinsic pontine glioma (DIPG). Taken together, these findings indicate that BDNF-TrkB signaling promotes malignant synaptic plasticity and augments tumor progression.
Project description:Background Huntington’s disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in a triad of behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. OVT73 captures an early prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. Methods To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. Results We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in OVT73 medium spiny neurons, the cell type preferentially lost early in HD. This observation supports the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process. Moreover, we also observed the downstream consequences of excitotoxic stress, including a downregulation of transcription of components for the oxidative phosphorylation complexes. We also found that pathways whose activity has been proposed to reduce excitotoxicity, including the CREB family of transcription factors (CREB1, ATF2, ATF4 and ATF7) were transcriptionally downregulated. Conclusions To our knowledge, the OVT73 model is the first large mammal HD model that exhibits transcriptomic signatures of an excitotoxic process in the absence of neuronal loss. Our results suggest that glutamate excitotoxicity is a disease-initiating process. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.
Project description:AMPA receptors are involved not only in neuronal plasticity but also in excitotoxicity, mediated largely by the influx of Ca2+ (Choi et al., 1988). Their implication has been highlighted in animal models of ischemia and epilepsy. Studies of ischemic rodent models featured that prior to cell death, hippocampal CA1 pyramidal cells exhibit an increased AMPA receptor-mediated Ca2+ influx and decreased GluR2 and GluR3 mRNA and protein levels (Gorter et al., 1997; Heuerteaux et al., 1995). A total of 15 RNA samples were analyzed. Cultured murine primary cortical neurons were treated with 300uM AMPA over a time-course of 5h, 15h and 24h (n=3) in addition to the vehicle control (n=6).
Project description:AMPA receptors are involved not only in neuronal plasticity but also in excitotoxicity, mediated largely by the influx of Ca2+ (Choi et al., 1988). Their implication has been highlighted in animal models of ischemia and epilepsy. Studies of ischemic rodent models featured that prior to cell death, hippocampal CA1 pyramidal cells exhibit an increased AMPA receptor-mediated Ca2+ influx and decreased GluR2 and GluR3 mRNA and protein levels (Gorter et al., 1997; Heuerteaux et al., 1995).