Project description:Neisseria meningitidis is an obligate commensal colonising the human nasopharynx and occasionally invades the bloodstream causing life-threatening meningitis and septicaemia. The gene NMB0419 on the genome of N. meningitidis MC58 encodes a putative Sel1-like repeat (SLR) containing protein, which has been implicated in mediating meningococcal invasion of epithelial cells. We prepared RNA samples from N. meningitidis MC58 (WT) and its isogenic mutant of NMB0419 grown to log phase in in-vitro culture. The RNA samples were subjected to RNA sequencing. The resulting transcriptomes were compared to determine the genes that differentially expressed in NMB0419 mutant.
Project description:The zur regulon in Neisseria meningitidis was elucidated in the strain MC58 using a zur knockout strain and conditions which activate Zur ( zinc supplementation in the medium) Common reference design, zur knock out strain was used as the common reference and the samples wild type strain grown in RPMI and in RPMI with Zinc supplementation were compared to the common reference.
Project description:The zur regulon in Neisseria meningitidis was elucidated in the strain MC58 using a zur knockout strain and conditions which activate Zur ( zinc supplementation in the medium)
Project description:Microarray comparative genome hybridization (mCGH) data was collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae, and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491, and FAM18 and N. gonorrhoeae FA1090.
Project description:Wild type Neisseria gonorrhoea strain FA1090 and N. meningitidis strain MC58 were grown on normal GC plate at either 35 degree celsius (for control samples) or 40 degree celsius (for test samples)
Project description:Neisseria meningitidis, a commensal β-proteobacterium of the human nasopharynx, constitutes a worldwide leading cause of sepsis and epidemic meningitis. The molecular basis for their "accidental" pathogenicity is still not fully understood. Here, we show that knock-out strains lacking the Cas9 protein are impaired in the adhesion to human nasopharyngeal cells which constitutes a central step in the pathogenesis of invasive meningococcal disease. Transcriptome sequencing data suggest that meningococcal Cas9 does not affect the expression of classical surface adhesins but rather exerts its effect on cell adhesion in an indirect manner. Consequently, we speculate that the meningococcal type II-C CRISPR/Cas system exerts novel functions beyond its established role in defence against foreign DNA.
Project description:Neisseria meningitidis is a major cause of bacterial meningitis and septicemia worldwide. Seven new serogroup C meningococci were isolated from two provinces of China in January, 2006. Their PorA VR types were P1.20, 9. Multilocus sequence typing results indicated that they all belonged to ST-7. It is a new serogroup C N. meningitidis sequence type clone identified in China. Here we also present the results of a genomic comparison of these isolates with other 15 N. meningitidis serogroup A and B isolates, which belonged to ST-7, based on comparative genomic hybridization analysis. The data described here would be helpful to monitor the spread of this new serogroup C meningococci sequence type clone in China and worldwide. Keywords: comparative genomic hybridization
Project description:Neisseria meningitidis serogroup B is a pathogen that can infect diverse sites within the human host. According to the N. meningitidis genomic information and experimental observations glucose can be completely catabolized through the Entner-Doudoroff pathway and the pentose phosphate pathway. The Embden-Meyerhof-Parnas pathway is not functional, because the gene for phosphofructokinase is not present. The phylogenetic distribution of phosphofructokinase indicates that in most obligate aerobic organisms PFK is lacking. We conclude that this is because of the limited contribution of PFK to the energy supply in aerobically grown organisms in comparison with the energy generated through oxidative phosphorylation. Under anaerobic or microaerobic conditions the available energy is limiting and PFK provides an advantage, which explains the presence of PFK in many (facultative) anaerobic organisms. In accordance with this, in silico flux balance analysis predicted an increase of biomass yield as a result of PFK expression. However, analysis of a genetically engineered N. meningitidis strain that expresses a heterologous phosphofructokinase showed that the yield of biomass on substrate decreased in comparison with a pfkA deficient control strain, which was associated mainly with an increase in CO2 production, whereas production of by-products was comparable between the two strains. This might explain why the pfkA gene has not been obtained by horizontal gene transfer, since it is initially unfavourable for biomass yield. No large effects related to heterologous expression of pfkA were observed in the transcriptome. Although our results suggest that introduction of PFK does not contribute to a more efficient strain in terms of biomass yield, achievement of a robust, optimal metabolic network that enables a higher growth rate or a higher biomass yield, might be possible after adaptive evolution of the strain, which remains to be investigated.