Project description:T cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye. Retinal pigment epithelium suppresses Th17 cells
Project description:T cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye.
Project description:Retinal pigment epithelial cells are critical for eye function and loss of cell function is linked to age-related blindness. Relatively little is known about the transcriptional regulatory networks in these cells. The datasets presented here are ChIP-seq experiments for RNA polymerase II , transcription factors and histone modifications in human retinal pigment epithelial cells. ChIP-Seq for transcription factors, RNA polymerase, histone modifications and CTCF in retinal pigment epithelial cells
Project description:Injuries to the retinal pigment epithelium (RPE) and outer retina often result in the accumulation of retinal microglia within the subretinal space. These subretinal microglia play crucial roles in inflammation and resolution, but the mechanisms governing their functions are still largely unknown. Our previous research highlighted the protective functions of choroidal gd T cells in response to RPE injury. In the current study, we employed single-cell RNA sequencing approach to delve deeper into the mechanisms involved. We found that gd T cells were the primary producer of interleukin-17 (IL-17) in the choroid. IL-17 signaled through its receptor on the RPE, subsequently triggering the production of interleukin-6 (IL-6). This cascade of cytokines initiated a metabolic reprogramming of subretinal microglia, enhancing their capacity for lipid metabolism. RPE-specific knockout of IL-17 receptor A led to the dysfunction of subretinal microglia and RPE pathology. Collectively, our findings suggest that responding to RPE injury, the choroidal gd T cells can initiate a protective signaling cascade that ensures the proper functioning of subretinal microglia.
Project description:Retinal pigment epithelial cells are critical for eye function and loss of cell function is linked to age-related blindness. Relatively little is known about the transcriptional regulatory networks in these cells. The datasets presented here are ChIP-seq experiments for RNA polymerase II , transcription factors and histone modifications in human retinal pigment epithelial cells.
Project description:Interleukin 17 (IL-17) producing T helper 17 (Th17) cells are critical drivers of pathogenesis in a variety of autoimmune and inflammatory diseases. Strategies to mitigate excessive Th17 response thus remain an attractive target for immunotherapies. Here we report that Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) regulates IL-17 production by Th17 cells in human and mouse. Using CIP2A knock-out (KO) mice and siRNA-mediated CIP2A silencing in human primary CD4+ T cells, we demonstrated that CIP2A silencing results in a significant increase in IL-17 production. Interestingly, CIP2A deficient Th17 cells were characterized by increased strength and duration of STAT3 (Y705) phosphorylation. Genome-wide gene expression profile as well as the p-STAT3 (Y705) interactome of CIP2A deficient Th17 cells identified that CIP2A regulates the strength of the interaction between Acylglycerol kinase (AGK) and STAT3, and thereby, modulates STAT3 phosphorylation as well as expression of IL-17 in Th17 cells. Our results uncover the physiological function of CIP2A in Th17 cells and provides new opportunities for therapeutic intervention in Th17 cell mediated diseases.
Project description:Interleukin-17 (IL-17)-secreting T helper 17 cells (Th17) are a recently identified CD4+ T helper subset that has been implicated in various inflammatory and autoimmune diseases. The issue of whether interleukin-17A (IL-17) contributes to hyperlipidemia-induced aortic endothelial cell activation remained unknown. Here, we reported that IL-17 contributes to hyperlipidemia-induced modulation of vascular cell gene expression during early atherosclerosis in vivo. Our results has shed lights onto the role of IL-17 on EC biology and has provided important insights for future development of novel therapeutics for early intervention of cardiovascular diseases and other inflammatory diseases.