Project description:This SuperSeries is composed of the following subset Series: GSE22618: JIL kinase – marker of active chromatin and sensor of dosage compensation GSE22620: JIL-1 RNAi in Drosophila S2 Cells Refer to individual Series
Project description:Profiling of changes in steady state RNA levels upon RNAi-mediated knockdown of the chromosomal kinase JIL-1 in Drosophila S2 cells.
Project description:Profiling of changes in steady state RNA levels upon RNAi-mediated knockdown of the chromosomal kinase JIL-1 in Drosophila S2 cells. Drosophila S2 cells were incubated 7 days after treatment with 10 µg of dsRNA directed against GST/EGFP or JIL-1, respectively. 5 biological replicates per target have been collected.
Project description:In Drosophila the chromosomal kinase JIL-1 is responsible for most interphase histone H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks, like dimethylated histone H3K9 (H3K9me2) and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a PWWP domain-containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer-JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes, where the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells lead to small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identify several interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatin formation but also coordinates chromatin-based regulation in the transcribed part of the genome.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.
Project description:In flies, the chromosomal kinase JIL-1 is responsible for most interphase H3S10 phosphorylation and has been proposed to protect active chromatin from acquiring heterochromatic marks like H3K9me2 and HP1. Here, we show that JIL-1’s targeting to chromatin depends on a new PWWP domain containing protein JASPer (JIL-1 Anchoring and Stabilizing Protein). The JASPer/JIL-1 (JJ)-complex is the major form of the kinase in vivo and is targeted to active genes and telomeric transposons via binding of the PWWP domain of JASPer to H3K36me3 nucleosomes. Put in place, the complex modulates the transcriptional output. JIL-1 and JJ-complex depletion in cycling cells induce small changes in H3K9me2 distribution at active genes and telomeric transposons. Finally, we identified many new interactors of the endogenous JJ-complex and propose that JIL-1 not only prevents heterochromatinisation, but also coordinates chromatin based regulation in the transcribed part of the genome.
Project description:modENCODE_submission_3038 This submission comes from a modENCODE project of Gary Karpen. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We aim to determine the locations of 125 chromosomal proteins across the Drosophila melanogaster genome. The proteins under study are involved in basic chromosomal functions such as DNA replication, gene expression, gene silencing, and inheritance. We will perform Chromatin ImmunoPrecipitation (ChIP) using genomic tiling arrays. We will initially assay localizations using chromatin from three cell lines and two embryonic stages, and will then extend the analysis of a subset of proteins to four additional animal tissues/stages For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf Keywords: CHIP-chip EXPERIMENT TYPE: CHIP-chip. BIOLOGICAL SOURCE: Cell Line: S2-DRSC; Tissue: embryo-derived cell-line; Developmental Stage: late embryonic stage; Sex: Male; NUMBER OF REPLICATES: 4; EXPERIMENTAL FACTORS: Cell Line S2-DRSC; Antibody JIL-1(Q4170) (target is JIL-1)