Project description:The polyploid S. cerevisiae karyotypes were analyzed by array-CGH to identify the deletion or duplication of gene or chromosome during the strain construction and after experimental evolution.
Project description:High-throughput techniques for detecting DNA polymorphisms generally do not identify changes in which the genomic position of a sequence, but not its copy number, varies among individuals. To explore such balanced structural polymorphisms, we used array-based Comparative Genomic Hybridization (aCGH) to conduct a genome-wide screen for single-copy genomic segments that occupy different genomic positions in the standard laboratory strain of Saccharomyces cerevisiae (S90) and a polymorphic wild isolate (Y101) through analysis of six tetrads from a cross of these two strains. Paired-end high-throughput sequencing of Y101 validated four of the predicted rearrangements. The transposed segments contained one to four annotated genes each, yet crosses between S90 and Y101 yielded mostly viable tetrads. The longest segment comprised 13.5 kb near the telomere of chromosome XV in the S288C reference strain and Southern blotting confirmed its predicted location on chromosome IX in Y101. Interestingly, inter-locus crossover events between copies of this segment occurred at a detectable rate. The presence of low-copy repetitive sequences at the junctions of this segment suggests that it may have arisen through ectopic recombination. Our methodology and findings provide a starting point for exploring the origins, phenotypic consequences, and evolutionary fate of this largely unexplored form of genomic polymorphism.
Project description:The vanillin tolerance Saccharomyces cerevisiae was screened and compared intracellular ergosterol levels with several laboratory yeast strains, to study potential relationship between ergosterol contents and vanillin tolerance. S. cerevisiae NBRC1950 was selected as a vanillin tolerant strain. Its ergosterol contents were higher than those of laboratory strains. The results of DNA microarray and quantitative RT-PCR analysis showed that 5 genes involved in ergosterol biosynthesis (ERG28, HMG1, MCR1, ERG5 and ERG7) were up-regulated in NBRC 1950 compared with strain X2180, suggested that high expressions of genes involved in ergosterol biosynthesis may cause for the high ergosterol content in strain NBRC 1950. S. cerevisiae HX strain, which was a high ergosterol content strain derived from X2180, became more tolerant to vanillin compared with the parental strain. It is suggested that high ergosterol contents may be in part responsible for vanillin tolerance. These findings provide a biotechnological basis for the molecular engineering of S. cerevisiae with increased tolerance to vanillin.
Project description:We report the genome-wide localization of Sgo1p in mitosis of Saccharomyces cerevisiae using ChIP-seq. The high resolution mapping clearly shows a tripartite domain of Sgo1p in each mitotic chromosome. This domain requires the wildtype tension sensing motif (TSM) of histone H3.
Project description:Saccharomyces cerevisiae is bradytroph for class B vitamins, it means that yeast cells exhibit slower growth in the absence of an external source of these metabolites. Alleviating these nutritional requirements for optimal growth performance would represent a valuable phenotypic characteristic for industrial strains since this would result in cheaper processes that would also be less susceptible to contaminations. In the present study, suboptimal growth of S. cerevisiae in absence of either pantothenic acid, para-aminobenzoic acid (pABA), pyridoxine, inositol and biotin were corrected by single or double gene overexpression of native FMS1, ABZ1/ABZ2, SNZ1/SNO1, INO1 and the Cyberlindnera fabianii BIO1, respectively. Several strategies were attempted to improve growth of S. cerevisiae CEN.PK113-7D in absence of thiamine, revealing that overexpression of THI4 and THI4/THI5 was able to improve growth up to 83% of the maximum specific growth rate of the reference CEN.PK113-7D in medium including all vitamins. Although the initial aim of this study was to combine all identified mutations in a single strain, the engineered strain IMX2210 only harboured genes to correct biotin, pABA, pantothenate and inositol bradotrophies. Firstly, this strain was fast-growing at a maximum specific growth rate of 0.28 ± 0.01 h-1 in medium devoid of all vitamins. Secondly, this strain exhibited physiological variables in aerobic glucose limited chemostat cultures at a dilution rate of 0.1 h-1 in absence of vitamins similar to that of the reference strain CEN.PK113-7D grown in the same conditions but in a fully supplemented complete medium. These physiological similarities were further emphasized by the limited differences observed in comparative transcriptome analysis from the chemostat culture grown cells that were essentially affecting genes of the class B vitamins biosynthetic pathways. This work paves the way towards construction of the first fast growing vitamin-independent S. cerevisiae strain.
Project description:A propolis-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation under gradually increasing propolis levels. The mutant strain FD 11 was selected at a propolis concentration that the reference strain could not grow at all. Whole-genome transcriptomic analysis of FD11 was performed with respect to its reference strain to determine differences in gene expression levels between the two strains. Saccharomyces cerevisiae
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:The aim of this project was to evaluate the ploidy of a S. cerevisiae *S. kudriavzevii hybrid in comparison to the lab strain S288C. Other wine yeast have been icluded in the project for the global analysis.
Project description:To determine the genomic location of a gene that permits xylose utilization we conducted bulk segregant analysis (BSA) using Affymetrix yeast tiling arrays. BSA works by taking advantage of DNA sequence polymorphisms between different strains and the fact that it is relatively easy to pool large numbers of meiotic spore products (segregants) in yeast. Pooling segregants based on their phenotype allows the region of the genome responsible for the phenotype to be detected. This is because DNA polymorphisms in regions unlinked to the locus causing the phenotype will segregate randomly and be “evened” out, while around the genomic region of interest, sequences or polymorphisms responsible for the trait will be present in all positive segregants, and absent in all negative segregants. In our case, a Simi White wine strain (S. cerevisiae) carrying the locus responsible for xylose utilization was crossed to a laboratory strain of Saccharomyces cerevisiae; this strain was estimated to carry DNA polymorphisms relative to the laboratory strain at a level of approximately .5%. Spores from the Simi White / S288c diploid were screened for the xylose utilization phenotype and 39 positive spores were combined into one pool and 39 negative spores into another pool, and genomic DNA (gDNA) was isolated from each pool. We then hybridized the positive and negative gDNA pools to tiling microarrays that were based on the S288c reference genome with the expectation that regions of the genome derived from Simi White will hybridize less robustly to the array because of the DNA polymorphisms between Simi White and S288c. Log2 ratios of probe intensities were calculated (negative/positive), and a peak appeared in the chromosome XV right subtelomeric region that corresponds to less robust hybridization to the microarray of the positive pool gDNA coming from this region of the genome