Project description:DNA methylation at proximal promoters facilitates lineage restriction by silencing cell-type specific genes. However, euchromatic DNA methylation frequently occurs in regions outside promoters. The functions of such non-proximal promoter DNA methylation are unclear. Here we show that the de novo DNA methyltransferase Dnmt3a is expressed in postnatal neural stem cells (NSCs) and is required for neurogenesis. Genome-wide analysis of postnatal NSCs indicates that Dnmt3a occupies and methylates intergenic regions and gene bodies flanking proximal promoters of a large cohort of transcriptionally permissive genes, many of which encode regulators of neurogenesis. Surprisingly, Dnmt3a-dependent non-proximal promoter methylation promotes expression of these neurogenic genes by functionally antagonizing Polycomb repression. Thus, non-promoter DNA methylation by Dnmt3a may be utilized for maintaining active chromatin states of genes critical for development. Chromatin extracted from wild-type (WT) or Dnmt3a-null (KO) SVZ NSCs was immunoprecipitated with indicated antibodies and analyzed by NimbleGen 2.1M mouse whole genome tiling microarrays (a 4-array set covering the entired non-repetitive portion of mouse genome). Whole cell extract (WCE) was used as input controls for IP/WCe experiments. For IP/IP experiments, immunoprecipitated DNA from WT and KO NSCs was directly compared on the same microarrays. For identifying Dnmt3a-dependent DNA methylation at a genome-wide scale, a dye-swap design was employed for comparing DNA methylation levels between WT and KO SVZ NSCs.
Project description:DNA methylation at proximal promoters facilitates lineage restriction by silencing cell-type specific genes. However, euchromatic DNA methylation frequently occurs in regions outside promoters. The functions of such non-proximal promoter DNA methylation are unclear. Here we show that the de novo DNA methyltransferase Dnmt3a is expressed in postnatal neural stem cells (NSCs) and is required for neurogenesis. Genome-wide analysis of postnatal NSCs indicates that Dnmt3a occupies and methylates intergenic regions and gene bodies flanking proximal promoters of a large cohort of transcriptionally permissive genes, many of which encode regulators of neurogenesis. Surprisingly, Dnmt3a-dependent non-proximal promoter methylation promotes expression of these neurogenic genes by functionally antagonizing Polycomb repression. Thus, non-promoter DNA methylation by Dnmt3a may be utilized for maintaining active chromatin states of genes critical for development.
Project description:DNA methylation at proximal promoters facilitates lineage restriction by silencing cell-type specific genes. However, euchromatic DNA methylation frequently occurs in regions outside promoters. The functions of such non-proximal promoter DNA methylation are unclear. Here we show that the de novo DNA methyltransferase Dnmt3a is expressed in postnatal neural stem cells (NSCs) and is required for neurogenesis. Genome-wide analysis of postnatal NSCs indicates that Dnmt3a occupies and methylates intergenic regions and gene bodies flanking proximal promoters of a large cohort of transcriptionally permissive genes, many of which encode regulators of neurogenesis. Surprisingly, Dnmt3a-dependent non-proximal promoter methylation promotes expression of these neurogenic genes by functionally antagonizing Polycomb repression. Thus, non-promoter DNA methylation by Dnmt3a may be utilized for maintaining active chromatin states of genes critical for development.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational âhotspotâ at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of âstemnessâ gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided enhanced Reduced Representation Bisulfite Sequencing (eRRBS) DNA methylome profiling data showing effect of DNMT3A R882H mutation or WT expression on hematopoietic stem/progenitor cells with NRAS G12D co-transduction. eRRBBs DNA methylome analysis of Lin- enriched hematopoietic stem/progenitor cells with retroviral infection of NRAS G12D alone (EV-RAS), DNMT3A R882H with NRAS G12D (RH-RAS) or DNMT3A WT with NRAS G12D (WT-RAS) at day 16 post-transduction.
Project description:CpG methylation in genomic DNA is well known as a repressive epigenetic marker in eukaryotic transcription, and hypermethylation of the promoter region is correlated with silencing of gene expression. In contrast to the promoter region, the function of DNA methylation at transcription termination remains to be elucidated. A recent study has revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions (including transcription termination sites (TTSs)) during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we employed two strategies: informatic analysis using already deposited datasets of Dnmt3a-/- mouse cells and the zebrafish model system. Bioinformatic analysis using methylome and transcriptome data showed that hypomethylated differentially methylated regions overlapping the TTSs were associated with increased transcript counts and chimeric transcripts downstream of TTSs in Dnmt3a-/- Agouti-related protein neurons, but not in Dnmt3a-/- ES cells and MEFs. We experimentally detected increased read-through and chimeric transcripts downstream of hypomethylated TTSs in zebrafish maternal-zygotic Dnmt3aa-/- mutants. This study is the first to identify transcription termination defects in DNA hypomethylated TTSs in Dnmt3a-/- vertebrates.
Project description:CpG methylation in genomic DNA is well known as a repressive epigenetic marker in eukaryotic transcription, and hypermethylation of the promoter region is correlated with silencing of gene expression. In contrast to the promoter region, the function of DNA methylation at transcription termination remains to be elucidated. A recent study has revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions (including transcription termination sites (TTSs)) during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we employed two strategies: informatic analysis using already deposited datasets of Dnmt3a-/- mouse cells and the zebrafish model system. Bioinformatic analysis using methylome and transcriptome data showed that hypomethylated differentially methylated regions overlapping the TTSs were associated with increased transcript counts and chimeric transcripts downstream of TTSs in Dnmt3a-/- Agouti-related protein neurons, but not in Dnmt3a-/- ES cells and MEFs. We experimentally detected increased read-through and chimeric transcripts downstream of hypomethylated TTSs in zebrafish maternal-zygotic Dnmt3aa-/- mutants. This study is the first to identify transcription termination defects in DNA hypomethylated TTSs in Dnmt3a-/- vertebrates.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational âhotspotâ at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of âstemnessâ gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided H3K4me1, H3K27ac and H3K79me2 ChIP-seq profiling data showing effect of DNMT3A R882H mutation or WT expression on epigenetic landscapes of hematopoietic stem/progenitor cells with NRAS G12D co-transduction. ChIP-seq analysis of Lin- enriched hematopoietic stem/progenitor cells with retroviral infection of NRAS G12D alone (EV-RAS), DNMT3A R882H with NRAS G12D (RH-RAS) or DNMT3A WT with NRAS G12D (WT-RAS) 3 weeks post-transduction. Antibodies of H3K4me1, H3K27ac and H3K79me2 were used.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational â??hotspotâ?? at Arg882 (i.e., DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of â??stemnessâ?? gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided microarray data showing effect of R882H-mutated or WT DNMT3A on gene expression among HSPCs with NRAS G12D co-transduction. Microarray analysis of Lin- enriched hematopoietic stem/progenitor cells with retroviral infection of NRAS G12D alone (EV-RAS), DNMT3A R882H with NRAS G12D (RH-RAS) or DNMT3A WT with NRAS G12D (WT-RAS) at day 12 or day 16 post-transduction.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational ‘hotspot’ at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of ‘stemness’ gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided enhanced Reduced Representation Bisulfite Sequencing (eRRBS) DNA methylome profiling data showing effect of DNMT3A R882H mutation or WT expression on hematopoietic stem/progenitor cells with NRAS G12D co-transduction.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational ‘hotspot’ at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of ‘stemness’ gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided H3K4me1, H3K27ac and H3K79me2 ChIP-seq profiling data showing effect of DNMT3A R882H mutation or WT expression on epigenetic landscapes of hematopoietic stem/progenitor cells with NRAS G12D co-transduction.