Project description:About 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis. kewywords: Mouse megakaryocyte progenitors Expression data of flow cytometrically isolated murine megakaryocyte progenitor cells (lin-, Sca-1-, c-kit+, CD150+, CD41+) from C57/BL6 murine fetal liver and bone marrow
Project description:To investigate the differences in microRNA expression profiles between fibrotic and normal livers, we performed microRNA microarrays for total RNA extracts isolated from mouse livers treated with carbontetrachloride (CCl4) or corn-oil for 10 weeks (n=3/group). MicroRNAs were considered to have significant differences in expression level when the expression difference showed more than two-fold change between the experimental and control groups at p<0.05. We found that 12 miRNAs were differentially expressed in CCl4-induced fibrotic liver.
Project description:About 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis. kewywords: Mouse megakaryocyte progenitors Expression data of flow cytometrically isolated murine megakaryocyte progenitor cells (lin-, Sca-1-, c-kit+, CD150+, CD41+) from GATA1s fetal liver and bone marrow
Project description:MicroRNAs are small non-coding RNAs that regulate cellular development by interfering with mRNA stability and translation. We defined the kinetics of global microRNA expression during the differentiation of murine hematopoietic progenitors into megakaryocytes. Of 435 miRNAs analyzed, 13 were upregulated and 81 were downregulated. Many of these changes are consistent with miRNA profiling studies of human megakaryocytes and platelets, although new patterns also emerged. Among 7 conserved miRNAs that were upregulated most strongly in megakaryocytes, 6 were also induced in the related erythroid lineage. MiR-146a was strongly upregulated during mouse and human megakaryopoiesis, but not erythropoiesis. However, overexpression of miR-146a in mouse bone marrow hematopoietic progenitor populations produced no detectable alterations in megakaryocyte development or platelet production in vivo or in colony assays. Our findings extend the repertoire of differentially regulated miRNAs during murine megakaryopoiesis and provide a useful new dataset for hematopoiesis research. In addition, we show that enforced hematopoietic expression of miR-146a has minimal effects on megakaryopoiesis. These results are compatible with prior studies indicating that miR-146a inhibits megakaryocyte production indirectly by suppressing cytokine production from innate immune cells, but cast doubt on a different study, which suggests that this miRNA inhibits megakaryopoiesis cell-autonomously. Exiqon locked nucleic acid (LNA) microarrays were used to compare microRNA expression in starting populations (ter 119- progenitors) and purified megakaryocytes. Day13.5-14.5 murine fetal livers (strain CD1) were depleted of erythroid cells and cultured with thrombopoietin to generate megakaryocytes. Each total RNA sample (0.5 μg per reaction) was labeled with Hy3 and Hy5 dyes using the Exiqon Power Labeling Kit and automated microarray hybridizations and washes were performed on a Tecan HS4800 station with 20 hr hybridization at 56ºC. Dye-swap pairs of three replicate experiments comparing Ter119- fetal liver cells vs. BSA-purified megakaryocytes were co-hybridized to six arrays. The geometric average of the 532 and 635 measurements after normalization was determined for each sample.