Project description:Regulation of gene expression in response to variable and often adverse environmental conditions is an essential component of microbial pathogenesis. We identified the two-component regulatory system CiaRH in a screen for genes essential for the survival of Streptococcus agalactiae (Group B Streptococcus, GBS) on exposure to in vitro models of environmental stress. We constructed site-directed, non-polar deletion mutations in the regulator gene ciaR and compared the growth of CiaR mutant GBS to wild-type GBS under stressed conditions. CiaR mutant GBS are more sensitive than wild-type GBS to elevated temperature, low pH, chemical mutagens and ultraviolet light; the mutants are also more sensitive to cell-wall active antibiotics and antimicrobial peptides. CiaR mutant strains are markedly attenuated in a mouse model of GBS sepsis. To determine the genes regulated by CiaR that account for these defects, transcriptional profiling was performed using DNA microarray analysis, comparing wild-type GBS to CiaR mutant GBS under non-stressed conditions.
Project description:The CiaRH and LiaFSR two-component regulatory systems in Streptococcus agalactiae (Group B Streptococcus, GBS) are essential mediators of the organism s response to biologically important sources of environmental stress, and positive regulators of GBS virulence. Transcriptional profiling of CiaR mutant GBS and LiaR mutant GBS reveals that LiaR is positively-regulated by CiaR, and the individual mutant transcriptomes share a number of commonly-regulated genes. To determine the GBS response to loss of both of these key regulatory systems, we constructed a GBS mutant strain with non-polar deletions in both ciaR and liaR, and performed transcriptional profiling using DNA microarray analysis, comparing wild-type GBS to CiaR/LiaR double mutant GBS under non-stressed conditions.
Project description:The CiaRH and LiaFSR two-component regulatory systems in Streptococcus agalactiae (Group B Streptococcus, GBS) are essential mediators of the organism s response to biologically important sources of environmental stress, and positive regulators of GBS virulence. Transcriptional profiling of CiaR mutant GBS and LiaR mutant GBS reveals that LiaR is positively-regulated by CiaR, and the individual mutant transcriptomes share a number of commonly-regulated genes. To determine the GBS response to loss of both of these key regulatory systems, we constructed a GBS mutant strain with non-polar deletions in both ciaR and liaR, and performed transcriptional profiling using DNA microarray analysis, comparing wild-type GBS to CiaR/LiaR double mutant GBS under non-stressed conditions. Two separate RNA samples were extracted for each condition. One flip-dye replicate (2 hybridizations) was obtained for each pair of RNA samples for 4 hybridizations total.
Project description:Transcriptome analysis of Streptococcus agalactiae (group B Streptococcus) grown under control conditions or coincubated with serine hydroxamate to induce the bacterial stringent response
Project description:Streptococcus agalactiae (Lancefield’s group B Streptococcus, GBS) is a major bacterial species of genus Streptococcus and has medical and veterinary importance by affecting mainly humans (Maione et al., 2005; Johri et al., 2006), cattle (Keefe, 1997) and fish (Mian et al., 2009). The GBS is the most important pathogen for the Nile tilapia, a global commodity of the aquaculture sector, causing outbreaks of septicemia and meningoencephalitis (Hernández et al., 2009; Mian et al., 2009).
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae cells deficient in SczA (∆sczA strain GU2791), grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500.
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae cells deficient in CopY (∆copY strain GU2857), grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500.
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae cells deficient in CovR (∆covR strain GU2400), grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500
Project description:Total RNA was isolated from mid-log phase Streptococcus agalactiae 874391 wild-type cells grown in Todd-Hewitt broth (THB) medium and sequenced using Illumina NextSeq500
Project description:Streptococcus agalactiae (Lancefield’s group B Streptococcus, GBS) is a major bacterial species of genus Streptococcus and has medical and veterinary importance by affecting mainly humans (Maione et al., 2005; Johri et al., 2006), cattle (Keefe, 1997) and fish (Mian et al., 2009). The GBS is the most important pathogen for the Nile tilapia, a global commodity of the aquaculture sector, causing outbreaks of septicemia and meningoencephalitis (Hernández et al., 2009; Mian et al., 2009). This study aimed to evaluate the global abundancy of proteins among the main genotypes of GBS isolated from fish identified in Brazil using a label free shotgun liquid chromatography-ultra definition mass spectrometry (LC-UDMSE) approach and to compare the differential expression of proteins identified between isolates from fish and human.