Project description:This SuperSeries is composed of the following subset Series: GSE22521: Gene expression in primate postnatal brain through lifespan - prefrontal cortex GSE22569: Gene expression in primate postnatal brain through lifespan - cerebellar cortex Refer to individual Series
Project description:This SuperSeries is composed of the following subset Series: GSE17757: Gene expression data from primate postnatal brain in prefrontal cortex: time course GSE18012: miRNA expression data from human postnatal brain in prefrontal cortex: time course GSE18013: miRNA expression data from rhesus macaque postnatal brain in prefrontal cortex: time course Refer to individual Series
Project description:We investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities. Keywords: Age series Human, chimpanzee and rhesus macaque post-mortem brain samples from the superior frontal gyrus region of the prefrontal cortex were collected. The age ranges of the individuals in all three species covered the respective species' postnatal maturation period from infancy to old adulthood. RNA extracted from the dissected tissue was hybridized to Affymetrix® Human Gene 1.0 ST arrays. PFC samples.
Project description:We investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities. Keywords: Age series
Project description:While multiple studies have reported the accelerated evolution of brain gene expression in the human lineage, the mechanisms underlying such change remain poorly understood. Here we address this issue from a developmental perspective, by analyzing mRNA and microRNA (miRNA) expression in two brain regions within macaques, chimpanzees and humans throughout their lifespan. We find that developmental profiles of trans-regulators, such as miRNA, as well as their target genes, show the fastest rates of human-specific evolutionary change. Changes in expression of a few key regulators may be a major driving force behind human brain evolution. Human, chimpanzee and rhesus macaque post-mortem brain samples from the prefrontal cortex and cerebellar cortex were collected. The age ranges of the individuals in all three species covered the respective species' postnatal maturation period from infancy to old adulthood. RNA extracted from the dissected tissue was hybridized to B72.
Project description:We investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities. Keywords: Age series Human, chimpanzee and rhesus macaque post-mortem brain samples from the cerebellar cortex were collected. The age ranges of the individuals in all three species covered the respective species' postnatal maturation period from infancy to old adulthood. RNA extracted from the dissected tissue was hybridized to Affymetrix® Human Gene 1.0 ST arrays. CBC samples.