Project description:This SuperSeries is composed of the following subset Series: GSE22497: Transcriptome analysis of Geobacter sulfurreducens under multiple growth conditions GSE22503: ChIP-chip of Geobacter sulfurreducens PCA with antibody against RNAP and RpoD under various conditions GSE22511: Genome-wide transcription start site determination of Geobacter sulfurreducens under multiple growth conditions Refer to individual Series
Project description:This SuperSeries is composed of the following subset Series: GSE17834: Transcriptome analysis of Geobacter sulfurreducens grown with different nitrogen sources GSE17837: ChIP-chip of Geobacter sulfurreducens PCA with antibody against RpoN under various conditions. Refer to individual Series
Project description:We applied a ChIP-chip approach to elucidate the binding profiles of RNAP and RpoD experimentally under different growth conditions. This technique localizes DNA fragments within DNA-protein complexes enriched by chromatin immunoprecipitation using high-density oligonucleotide tilling arrays. A 21 ChIP-chip study using immunoprecipitated DNA (IP-DNA) from three culture conditions for RNAP and four culture conditions for RpoD. The high-density oligonucleotide tiling arrays used consisted of 381,174 oligonucleotide probes spaced 20 bp apart (30-bp overlap between two probes) across the G. sulfurreducens genome (NimbleGen). Experiments were conducted as three bioliogical replicates (different cultures).
Project description:Propionate accumulation is an important bottleneck for anaerobic degradation of organic matter. We hypothesized that propionate conversion by a novel coculture of Syntrophobacter fumaroxidans and Geobacter sulfurreducens can be an alternative strategy for propionate oxidation coupled to Fe(III) reduction. In this study, we successfully cocultured S. fumaroxidans and G. sulfurreducens on propionate and Fe(III). Proteomic analyses of this coculture provided insights into the underlying mechanisms of propionate metabolism pathway and interspecies electron transfer mechanism. Our study can be further useful in understanding syntrophic propionate degradation in bioelectrochemical and anaerobic digestion systems.