Project description:This SuperSeries is composed of the following subset Series: GSE21640: Gene expression analysis of cardiomyocytes treated with a clinically relevant concentration of DEHP (50 ug/mL) GSE21641: Dose-dependent gene expression analysis of cardiomyocytes treated with DEHP (1-50 ug/mL) Refer to individual Series
Project description:We used microarrays to expression profile cardiomyocytes from neonatal Sprague-Dawley rats treated with 1 to 50 ug/mL DEHP and control (0.1% DMSO) to identify changes in gene expression related to connexin-43 expression, calcium handling, arrhythmogenesis and mechanical motion. Rat neonatal cardiomyocytes were treated with 1 ug/ml, 10 ug/ml, or 50 ug/ml DEHP (diluted in 0.1% DMSO) for 3 days, control samples were treated with 0.1% DMSO. Cardiomyocytes used in the experiments were from the same litter. Samples within a treatment group (control, DEHP) are biological replicates.
Project description:We used microarrays to expression profile cardiomyocytes from neonatal Sprague-Dawley rats treated with 50 ug/mL DEHP and control (0.1% DMSO) to identify changes in gene expression related to connexin-43 expression, calcium handling, arrhythmogenesis and mechanical motion.
Project description:We used microarrays to expression profile cardiomyocytes from neonatal Sprague-Dawley rats treated with 1 to 50 ug/mL DEHP and control (0.1% DMSO) to identify changes in gene expression related to connexin-43 expression, calcium handling, arrhythmogenesis and mechanical motion.
Project description:We used microarrays to expression profile cardiomyocytes from neonatal Sprague-Dawley rats treated with 50 ug/mL DEHP and control (0.1% DMSO) to identify changes in gene expression related to connexin-43 expression, calcium handling, arrhythmogenesis and mechanical motion. Rat neonatal cardiomyocytes were treated with DEHP (diluted in 0.1% DMSO) for 3 days, control samples were treated with 0.1% DMSO. Cardiomyocytes used in the experiments were from the same litter. Samples within a treatment group (control, DEHP) are biological replicates.
Project description:To further study the transcriptome of THP-1 human monocytes after exposure to S-Nitrosoglutathione (GSNO), we investigate whole genome microarray expression to identify genes regulated by exposure or not to GSNO. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 50 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of GSNO-loaded ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 200 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 200 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 24 h to 50 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of GSNO-loaded ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 24 h to 50 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 50 ug / mL of empty polymeric Eudragit RL nanoparticles (empty ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 50 ug / mL of empty ENP. To further study the transcriptome of THP-1 human monocytes after exposure for 4 h to 200 ug / mL of S-Nitrosoglutathione-loaded polymeric Eudragit RL nanoparticles (GSNO-loaded ENP), we investigate whole genome microarray expression to identify genes regulated by exposure or not to 200 ug / mL of GSNO-loaded ENP.
Project description:We report the biological effect of particulate matter on ferret lung epithelial cells with different concentration 500 ug/mL and 250 ug/mL. Treatment time is 48 h.
Project description:Triclosan is a biocidal active agent commonly found in domestic cleaning products, hand sanitizers, cosmetics and personal care products. It is used to control microbial contamination and has a broad-spectrum of activity against many Gram-positive and Gram-negative bacteria. The development of triclosan tolerance with potential cross resistance to clinically relevant antibiotics in zoonotic pathogens is of concern given the widespread use of this active agent in clinical, food processing and domestic environments. Some studies have proposed that an over-dependence on triclosan-containing products could lead to the emergence of clinically important pathogens that are highly tolerant to both biocides and antibiotics. Currently, there is limited understanding of the mechanisms contributing to the emergence of triclosan tolerance in foodborne pathogens at a genetic level. We used microarray analysis to compare gene expression between a wildtype E. coli O157:H19 isolate (WT) with a minimum inhibitory concentration (MIC) to triclosan of 6.25 ug/ml and its laboratory generated triclosan tolerant mutant (M) with a MIC of >8000 ug/ml.