Project description:Background: The analysis of oligonucleotide microarray data in pathogen surveillance and discovery assays is a challenging task. Target template concentration, nucleic acid integrity, and host nucleic acid composition can each have a profound effect on signal distribution. Exploratory analysis of fluorescent signal distribution in clinical samples has revealed deviations from normality, suggesting that distribution-free approaches should be applied. Results: An examination of both positive predictive value and false positive rates was employed to assess the utility of three well-established nonparametric methods for the analysis of viral array hybridization data: (1) Mann-Whitney U, (2) the Spearman correlation coefficient and (3) the chi-square test. Of the three tests, it was the chi-square that proved most useful. Conclusions: The acceptance of microarray use for routine clinical diagnostics will require that the technology be accompanied by simple yet reliable analytic methods. We report that our implementation of the chi-square test yielded a combination of low false positive rates and a high degree of predictive accuracy. A set of comprehensive probes covering vertebrate viruses was designed and printed using Agilent in-situ fabrication. Cells in tissue culture were infected with West Nile Virus, then RNA was harvested. RNA was converted to cDNA, then copy number was quantified by quantatative real-time PCR. RNA stocks were diluted to 10^4 or 10^6 copies per microliter then converted to cDNA, amplified, labeled and hybridized to the array. Human Lung RNA was used as a control and spiked in at 10ng or 200ng.
Project description:Background: The analysis of oligonucleotide microarray data in pathogen surveillance and discovery assays is a challenging task. Target template concentration, nucleic acid integrity, and host nucleic acid composition can each have a profound effect on signal distribution. Exploratory analysis of fluorescent signal distribution in clinical samples has revealed deviations from normality, suggesting that distribution-free approaches should be applied. Results: An examination of both positive predictive value and false positive rates was employed to assess the utility of three well-established nonparametric methods for the analysis of viral array hybridization data: (1) Mann-Whitney U, (2) the Spearman correlation coefficient and (3) the chi-square test. Of the three tests, it was the chi-square that proved most useful. Conclusions: The acceptance of microarray use for routine clinical diagnostics will require that the technology be accompanied by simple yet reliable analytic methods. We report that our implementation of the chi-square test yielded a combination of low false positive rates and a high degree of predictive accuracy.
Project description:Background: The analysis of oligonucleotide microarray data in pathogen surveillance and discovery assays is a challenging task. Target template concentration, nucleic acid integrity, and host nucleic acid composition can each have a profound effect on signal distribution. Exploratory analysis of fluorescent signal distribution in clinical samples has revealed deviations from normality, suggesting that distribution-free approaches should be applied. Results: An examination of both positive predictive value and false positive rates was employed to assess the utility of three well-established nonparametric methods for the analysis of viral array hybridization data: (1) Mann-Whitney U, (2) the Spearman correlation coefficient and (3) the chi-square test. Of the three tests, it was the chi-square that proved most useful. Conclusions: The acceptance of microarray use for routine clinical diagnostics will require that the technology be accompanied by simple yet reliable analytic methods. We report that our implementation of the chi-square test yielded a combination of low false positive rates and a high degree of predictive accuracy. A set of comprehensive probes covering vertebrate viruses was designed and printed using Agilent in-situ fabrication. Cells in tissue culture were infected with various viruses, then RNA was harvested. RNA was converted to cDNA, then amplified, labeled and hybridized to the array.
Project description:Background: The analysis of oligonucleotide microarray data in pathogen surveillance and discovery assays is a challenging task. Target template concentration, nucleic acid integrity, and host nucleic acid composition can each have a profound effect on signal distribution. Exploratory analysis of fluorescent signal distribution in clinical samples has revealed deviations from normality, suggesting that distribution-free approaches should be applied. Results: An examination of both positive predictive value and false positive rates was employed to assess the utility of three well-established nonparametric methods for the analysis of viral array hybridization data: (1) Mann-Whitney U, (2) the Spearman correlation coefficient and (3) the chi-square test. Of the three tests, it was the chi-square that proved most useful. Conclusions: The acceptance of microarray use for routine clinical diagnostics will require that the technology be accompanied by simple yet reliable analytic methods. We report that our implementation of the chi-square test yielded a combination of low false positive rates and a high degree of predictive accuracy.
Project description:CD8+ T cell responses to chronic infection are sustained by stem-like cells, which differentiate into effector-like cells mediating some level of pathogen control; however persistent antigen progressively impairs their effector functions. Understanding the molecular control of stem-like cell differentiation to improve durability of functional T cell responses has important therapeutic implications. Here, we found that the chemokine receptor CXCR3 was highly expressed on viral-specific stem-like CD8+ T cells and that one of its ligands, CXCL10, regulated the persistence and heterogeneity of responding CD8+ T cells in spleens of mice chronically infected with lymphocytic choriomeningitis virus. CXCL10 was produced by inflammatory monocytes and fibroblasts of the splenic red pulp where it granted stem-like cells access to signals promoting differentiation and limited their exposure to pro-survival niches in the white pulp. Consequently, the magnitude of functional CD8+ T cell responses was greater in Cxcl10-/- mice and was associated with a lower viral set point.
Project description:There is great interindividual variability in HIV-1 viral set point after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p=4.9E-12); however, we could not detect an independent association of the SNP with viral set point. Thus, this study represents the first attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a distinctive mRNA expression pattern in CD4+ T cells. Changes in RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control