Project description:The genetic closeness and divergent muscle growth rates of broilers and layers make them great models for myogenesis study. In order to discover the molecular mechanisms determining the divergent muscle growth rates and muscle fiber sizes in different chicken lines, we systematically identified differentially expressed genes between broilers and layers during muscle development (embyonic day 10, 12, 14 and 18) by microarray hybridization experiment.
Project description:The genetic closeness and divergent muscle growth rates of broilers and layers make them great models for myogenesis study. In order to discover the molecular mechanisms determining the divergent muscle growth rates and muscle fiber sizes in different chicken lines, we systematically identified differentially expressed genes between broilers and layers during muscle development (embyonic day 10, 12, 14 and 18) by microarray hybridization experiment. Time-course studies of two different intra-species breeds
Project description:The existence of conventional dendritic cells (cDCs) has not yet been demonstrated outside mammals. In this paper, we identified bona fide cDCs in chicken spleen. Comparative profiling of global and of immune response gene expression, morphology, and T cell activation properties show that cDCs and macrophages (MPs) exist as distinct mononuclear phagocytes in chicken, resembling their human and mouse cell counterparts. Using computational analysis, core gene expression signatures for cDCs, MPs, T and B cells across chicken, human and mouse were established, which will facilitate the identification of these subsets in other vertebrates. Overall this study, by extending the newly uncovered cDC and MP paradigm to chicken, suggests that the generation of these two phagocyte lineages occurred before the reptile to mammal and bird transition in evolution. It opens avenues for the design of new vaccines and neutraceuticals that are mandatory for the sustained supply of poultry products in the expanding human population.