Project description:Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that of these five proteins, only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens LAD – NL interactions by a local antagonistic effect. Our results provide insights into the evolution of LAD organization and reveal a role for SU(HW) in the regulation of genome – NL interactions. DamID experiments for Lamin, CTCF, SU(HW), GAF, DWG, and BEAF-32, and for Lamin after overexpression and after knockdown of SU(HW), were performed in Drosophila cell cultures. Samples were hybridized to 380k NimbleGen arrays with 300 bp probe spacing. Every experiment was done in duplicate in the reverse dye orientation. The supplementary file 'GSE20311_DamID_norm_mean.txt' contains the mean log2(Dam-fusion/Dam-only) values of two replicates.
Project description:Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that of these five proteins, only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens LAD M-bM-^@M-^S NL interactions by a local antagonistic effect. Our results provide insights into the evolution of LAD organization and reveal a role for SU(HW) in the regulation of genome M-bM-^@M-^S NL interactions. RNA was isolated from three independent Drosophila Kc167 cell cultures. Expression profiles were made of self-self hybridizations on spotted INDAC long oligo arrays. The three replicates were averaged.
Project description:Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that of these five proteins, only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens LAD – NL interactions by a local antagonistic effect. Our results provide insights into the evolution of LAD organization and reveal a role for SU(HW) in the regulation of genome – NL interactions.
Project description:Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that of these five proteins, only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens LAD – NL interactions by a local antagonistic effect. Our results provide insights into the evolution of LAD organization and reveal a role for SU(HW) in the regulation of genome – NL interactions.
Project description:Suppressor of Hairy-wing [Su(Hw)] is a globally expressed twelve-zinc finger transcription factor in Drosophila. Su(Hw) is well-known for its role in establishing the gypsy insulator within the gypsy retrotransposon. A direct role of Su(Hw) in gene activation and repression was uncovered through the study in the Drosophila oogenesis, revealing that Su(Hw)-dependent repression of neuronal genes is essential for egg production. Motivated from the spatially restricted expression of Su(Hw) in the testis, we investigated the role of Su(Hw) in spermatogenesis. We discovered that Su(Hw) is required for sperm development and male fertility. Data presented here examined the transcriptional role of Su(Hw) in the Drosophila testis. These studies identified ~400 genes with altered expression in the absence of Su(Hw). Coupled with whole-genome Su(Hw) binding profiles, we identified 145 direct targets of Su(Hw) regulation, of which ~80% show increased transcription upon Su(Hw) loss. Upregulated Su(Hw) targets are enriched for neuronal expression, emphasizing that Su(Hw) represents a functional homolog of mammalian REST that represses neuronal gene expression in non-neuronal tissues.
Project description:Chromatin insulators are DNA-protein complexes that can prevent the spread of repressive chromatin and block communication between enhancers and promoters to regulate gene expression. In Drosophila, the gypsy chromatin insulator complex consists of three core proteins: CP190, Su(Hw), and Mod(mdg4)67.2. These factors concentrate at nuclear foci termed insulator bodies, and their normal localization is correlated with proper insulator function. Here, we identified NURF301/E(bx), a nucleosome remodeling factor, as a novel regulator of gypsy insulator body localization through a high-throughput RNAi imaging screen. NURF301 promotes gypsy-dependent insulator barrier activity and physically interacts with gypsy insulator proteins. Using ChIP-seq, we found that NURF301 co-localizes with insulator proteins genome-wide, and NURF301 promotes chromatin association of Su(Hw) and CP190 at gypsy insulator binding sites. These effects correlate with NURF301-dependent nucleosome repositioning. At the same time, CP190 and Su(Hw) are also required for recruitment of NURF301 to chromatin. Finally, Oligopaint FISH combined with immunofluorescence revealed that NURF301 promotes 3D contact between insulator bodies and gypsy binding site DNA, and NURF301 is required for proper nuclear positioning of gypsy binding sites. Our data provide new insights into how a nucleosome remodeling factor and insulator proteins cooperatively contribute to nuclear organization.
Project description:There is considerable evidence that insulator elements are likely to play a key role in the organisation of the regulatory architecture of the genome. In Drosophila, one of the best studied insulator elements is the gypsy insulator in the gypsy retrotransposon whose function is dependent on the Su(Hw) Zn-finger DNA binding protein. Although there are several hundred Su(Hw) sites in the genome which are proposed to act as endogenous insulator elements, analysis of the role of the Su(Hw) protein has focussed on the gypsy insulator and few endogenous sites have yet been identified. We have used chromatin immunopurification coupled to genomic microarray analysis to identify Su(Hw) binding sites within a representative region of the Drosophila genome; the 3MB Adh region on chromosome 2L. We have located about 60 Su(Hw) binding sites across this region and this has enabled us to construct a robust new Su(Hw) binding site consensus based on these in vivo sites. In contrast to the gypsy insulator which contains 12 Su(Hw) binding sites within 340bp, the endogenous sites are not present in clusters. We identify two key features of these endogenous Su(Hw) sites. Firstly, in contrast to most analyses of DNA binding protein specificity, we find that strong matches to the binding consensus are good predictors of binding site occupancy. Secondly, examination of Su(Hw) binding site occupancy in 0-20hr embryos, 3rd larval instar brains or 3rd larval imaginal discs reveals a constant pattern of Su(Hw) binding indicating that most , if not all Su(Hw) sites are constitutively occupied. These two features support a constant genomic architectural role for the Su(Hw) protein. Keywords: ChIP-chip
Project description:Insulators delimit independent transcriptional domains within genomes by constraining enhancer and silencer action. These transcriptional effects depend upon DNA recognition by insulator binding proteins that recruit partners that protect against inappropriate long range modulation of non-target promoters. Insulator binding proteins are broadly expressed during development, with largely constitutive binding to thousands of genomic sites. Yet, tissue-specific transcriptional changes result from the loss of individual insulator binding proteins. To understand the molecular basis for such effects, we are studying the classic Drosophila insulator protein Suppressor of Hairy-wing [Su(Hw)]. Genetic studies show that loss of this broadly expressed insulator protein prevents oocyte development. To determine the basis for the block in oogenesis, we coupled transcriptional analyses in su(Hw) mutant ovaries with genome-wide definition of Su(Hw) binding in this tissue. These studies identified 71 direct targets of Su(Hw) regulation, with nearly 70% of these genes showing increased RNA accumulation when Su(Hw) is lost. Surprisingly, derepressed Su(Hw) target genes correspond to genes normally highly expressed in neural tissues, suggesting that Su(Hw) has a critical role in silencing neural genes in the ovary. Support for this postulate was obtained by genetic studies. We found that oocyte production was restored in su(Hw) mutant females that carry a deletion of one allele of the elav family RNA binding protein 9 (Rbp9) gene. These su(Hw) null oocytes can be fertilized, with evidence that embryos lacking Su(Hw) show compromised development. Our studies extend the known transcriptional activities of Su(Hw), indicating that Su(Hw) can function as an insulator, activator and repressor, the latter function being essential for oogenesis. These findings highlight that insulator proteins are versatile transcriptional regulatory proteins, suggesting that tissue specific contributions to transcription result from direct regulation of individual genes.