Project description:Hypoxia imposes a challenge upon most of the filamentous fungi that require oxygen for proliferation. Here, we used whole genome DNA microarrays to investigate global transcriptional changes in Aspergillus nidulans gene expression after exposure to hypoxia followed by normoxia. Aeration affected the expression of 2,864 genes (27% of the total number of genes in the fungus), of which 50% were either induced or repressed under hypoxic conditions. Up-regulated genes included those for glycolysis, ethanol production, the tricarboxylic acid (TCA) cycle, and for the γ-aminobutyrate (GABA) shunt that bypasses two steps of the TCA cycle. Ethanol and lactate production under hypoxic conditions indicated that glucose was fermented to these compounds via the glycolytic pathway. Since the GABA shunt bypasses the NADH-generating reaction of the TCA cycle catalyzed by oxoglutarate dehydrogenase, hypoxic A. nidulans cells eliminated excess NADH. Hypoxia down-regulated some genes involved in transcription initiation by RNA polymerase II, and lowered the cellular mRNA content. These functions were resumed by reoxygenation, indicating that A. nidulans controls global transcription to adapt to a hypoxic environment. This study is the first to show that hypoxia elicits systematic transcriptional responses in A. nidulans.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans OE::rsmA compared to wild-type RDIT9.32 (veA). A twelve array study using total RNA recovered from six separate cultures of Aspergillus nidulans wild-type RDIT9.32 (veA) and six separate cultures of Aspergillus nidulans overexpressing rsmA (restorer of secondary metabolism A), using custom-designed, four-plex arrays. The experiment was divided into two runs. In the first run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans carrying a plasmid overexpressing rsmA under the control of the gpdA promoter were assayed. In the second run, three biological replicates each of Aspergillus nidulans wild-type RDIT9.32 (veA) and Aspergillus nidulans overexpressing rsmA at the native locus under the control of the gpdA promoter were assayed.
Project description:Hypoxia imposes a challenge upon most of the filamentous fungi that require oxygen for proliferation. Here, we used whole genome DNA microarrays to investigate global transcriptional changes in Aspergillus nidulans gene expression after exposure to hypoxia followed by normoxia. Aeration affected the expression of 2,864 genes (27% of the total number of genes in the fungus), of which 50% were either induced or repressed under hypoxic conditions. Up-regulated genes included those for glycolysis, ethanol production, the tricarboxylic acid (TCA) cycle, and for the γ-aminobutyrate (GABA) shunt that bypasses two steps of the TCA cycle. Ethanol and lactate production under hypoxic conditions indicated that glucose was fermented to these compounds via the glycolytic pathway. Since the GABA shunt bypasses the NADH-generating reaction of the TCA cycle catalyzed by oxoglutarate dehydrogenase, hypoxic A. nidulans cells eliminated excess NADH. Hypoxia down-regulated some genes involved in transcription initiation by RNA polymerase II, and lowered the cellular mRNA content. These functions were resumed by reoxygenation, indicating that A. nidulans controls global transcription to adapt to a hypoxic environment. This study is the first to show that hypoxia elicits systematic transcriptional responses in A. nidulans. We transferred A. nidulans cells from normoxic to hypoxic conditions for 6 h, and then back to normoxic conditions to examine the effect of hypoxia on gene expression. Total RNA was prepared for DNA microarray analysis from the cells after 3 and 6 h of exposure to hypoxia, followed by 3 and 6 h of reoxygenation.
Project description:In Aspergillus nidulans, nitrogen and carbon metabolism are under the control of wide-domain regulatory systems, including nitrogen metabolite repression, carbon catabolite repression. Transcriptomic analysis of the wild type strain grown under different combinations of carbon and nitrogen regimes was performed, to identify differentially regulated genes. Carbon metabolism predominates as the most important regulatory signal but for many genes, both carbon and nitrogen metabolisms coordinate regulation.
Project description:Investigation of whole genome gene expression level changes in Aspergillus nidulans AN1599 (PbcR) overexpression mutant, compared to the FGSC A4 wild-type strain. Overexpression of the Zn(II)2Cys6 –type transcription factor, AN1599.4 (PbcR, pimaradiene biosynthetic cluster regulator), activates a secondary metabolite gene cluster in Aspergillus nidulans. Activation of the pathway in Aspergillus nidulans lead to a production of ent-pimara-8(14),15-diene.
Project description:Hypoxia imposes stress on filamentous fungi that require oxygen to proliferate. Global transcription analysis of Aspergillus oryzae grown under hypoxic conditions found that the expression of about 50% of 4,244 affected genes was either induced or repressed more than 2-fold. A comparison of these genes with the hypoxically-regulated genes of A. nidulans (Masuo et al., Mol. Gen. Genet. 2010, 284:415-424) based on their predicted amino acid sequences classified them as bi-directional best hit (BBH), one-way best hit (extra homolog: EH) and no-hit (non-syntenic genes: NSG) genes. Clustering analysis of the BBH genes indicated that A. oryzae and A. nidulans down-regulated global translation and transcription under hypoxic conditions, respectively. Under hypoxic conditions, both fungi up-regulated genes for alcohol fermentation and the γ-aminobutyrate shunt of the tricarboxylate cycle, whereas A. oryzae up-regulated the glyoxylate pathway, indicating that both fungi eliminate NADH accumulation under hypoxic conditions. The A. oryzae NS genes included specific genes for secondary and nitric oxide metabolism under hypoxic conditions. This comparative transcriptomic analysis discovered common and strain-specific responses to hypoxia in hypoxic Aspergillus species.
Project description:Experimental evolution was conducted using Drosophila melanogaster populations that developed as larvae on breeding substrate that was infested with Aspergillus nidulans wild type, A. nidulans toxin-impaired mutant strain delta-laeA, the mycotoxin sterigmatocystin, or on fungi and toxin free substrate. Overall population were reared under these conditions for 11 generations, where after each confrontation generation one relaxation generation (fungi and toxin free breeding substrate) was conducted. Nine generations after the last selection treatment, first instar larvae were confronted with 3 days old A. nidulans wild type colonies or control conditions. 24 hours after confrontation start larvae were collected. For each biological replicate 52 larvae were collected from 4 independent confrontation units, balanced design. Three populations per selection regime were conducted, resulting in: 2 conditions x 4 selection regimes x 3 biological replicates (equal to fly population) = 24 samples. Selection regimes: sCO= control; sWT= A. nidulans wild type; sLA= A. nidulans mutant strain; sST= Sterigmatocystin. confrontation condition: cCO= control; cWT= A. nidulans wild type.
Project description:Gene expression analysis of four different treatments of Aspergillus nidulans. reference line (A.nidulans), line A (A.nidulans + Streptomyces rapamycinicus), line B (A.nidulans + orsellinic acid), line C (A.nidulans + lecanoric acid)