Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to study the role of the plant growth regulator auxin during actinorhizal symbiosis and to identify key plant genes that are involved in auxin signaling during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen (N2) which favors the induction of nitrogen fixing symbiosis. For auxin role study, plant were treated with 25µM 1-naphtoxy acetic acid (1-NOA) all along nodulation time. Nodule were harvested 3 weeks after inoculation. For this study we considered two stages: - 21 days old nodules obtained on plants not treated with 1-NOA (control condition) - 21 days old nodules obtained on plants supplemented with 25µM of 1-NOA. Three biological replicates were used for each condition, however due to non valid staistics, two of the replicates (one for control condition, one for treated condition were removed.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition. Microarrays were designed by Imaxio (Clermont Ferrand, France ; http://www.imaxio.com/index.php) which has been accredited by Agilent Technologies (Palo Alto, CA, USA; http://www.home.agilent.com/agilent/home.jspx) as a certified service provider for microarray technologies. Based on 14327 annotated unigenes for C. glauca, 60mers probes were designed using eArray software (1 probe per unigene) and custom 8 x 15K Oligo Microarrays were manufactured by Agilent.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. They can also develop arbuscular mycorrhizae (AM) while associated with Glomeromycota fungi. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program in AM and to identify new key plant genes involved in endosymbioses.
Project description:Gene profiling during symbiosis between the actinorhizal tree Casuarina glauca and the actinobacteria Frankia CcI3 after treatment with 1-naphtoxy acetic acid, an auxin influx inhibitor.
Project description:Purpose: To compare RNASeq data of Frankia CcI3 in plants under salt stress. Casuarina glauca root nodules infected with Frankia CcI3 were exposed to either no salt or 100 mM NaCl for 21 days. RNA-seq analysis provided insight into how the sybiont responds to salt stress.
Project description:Gene profiling in arbuscular mycorrhizal symbiosis between the actinorhizal tree Casuarina glauca and the fungus Glomus intraradices.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. They can also develop arbuscular mycorrhizae (AM) while associated with Glomeromycota fungi. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program in AM and to identify new key plant genes involved in endosymbioses. C. glauca plants were grown in hydroponics then transferred to pots with or without spores of Glomus intraradices and watered with low phosphate solution to enhance mycorrhization. For this study we considered two stages: - a stage where plants were inoculated with G. intraradices, roots were harvested 8 weeks after inoculation with the G. intraradices. AM structures were present. - a stage where plants were not inoculated, roots were harvested at the same time as the inoculated roots , this is our control condition. AM structures were absent. Three biological replicates were used for each condition. Microarrays were designed by Imaxio (Clermont Ferrand, France ; http://www.imaxio.com/index.php) which has been accredited by Agilent Technologies (Palo Alto, CA, USA; http://www.home.agilent.com/agilent/home.jspx) as a certified service provider for microarray technologies. Based on 14327 annotated unigenes for C. glauca, 60mers probes were designed using eArray software (1 probe per unigene) and custom 8 x 15K Oligo Microarrays were manufactured by Agilent.