Project description:Chemoheterotrophic marine bacteria of the SAR11 clade are Earth's most abundant organisms. Following the first cultivation of a SAR11 bacterium, 'Candidatus Pelagibacter ubique' strain HTCC1062 (Ca. P. ubique) in 2002, unusual nutritional requirements were identified for reduced sulfur compounds and glycine or serine. These requirements were linked to genome streamlining resulting from selection for efficient resource utilization in nutrient-limited ocean habitats. Here we report the first successful cultivation of Ca. P. ubique on a defined artificial seawater medium (AMS1), and an additional requirement for pyruvate or pyruvate precursors. Optimal growth was observed with the collective addition of inorganic macro- and micronutrients, vitamins, methionine, glycine and pyruvate. Methionine served as the sole sulfur source but methionine and glycine were not sufficient to support growth. Optimal cell yields were obtained when the stoichiometry between glycine and pyruvate was 1:4, and incomplete cell division was observed in cultures starved for pyruvate. Glucose and oxaloacetate could fully replace pyruvate, but not acetate, taurine or a variety of tricarboxylic acid cycle intermediates. Moreover, both glycine betaine and serine could substitute for glycine. Interestingly, glycolate partially restored growth in the absence of glycine. We propose that this is the result of the use of glycolate, a product of phytoplankton metabolism, as both a carbon source for respiration and as a precursor to glycine. These findings are important because they provide support for the hypothesis that some micro-organisms are challenging to cultivate because of unusual nutrient requirements caused by streamlining selection and gene loss. Our findings also illustrate unusual metabolic rearrangements that adapt these cells to extreme oligotrophy, and underscore the challenge of reconstructing metabolism from genome sequences in organisms that have non-canonical metabolic pathways.
Project description:Candidatus pelagibacter ubique HTCC1062 requires 4-amino-5-hydroxymethyl-2-methylpyrimidine, an abundant thiamine precursor in the sea
Project description:Bacteria respond to stimuli in the environment using transcriptional control, but this may not be the case for most marine bacteria having small, streamlined genomes. Candidatus Pelagibacter ubique, a cultivated representative of the SAR11 clade, which is the most abundant clade in the oceans 4, has a small, streamlined genome and possesses an unusually small number of transcriptional regulators. This observation leads to the hypothesis that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. However, the extent of transcriptional control in Pelagibacter is unknown. Here we show that transcriptional control is extremely low in Pelagibacter and another oligotroph (SAR92) compared to two marine copiotrophic bacterial taxa, Polaribacter MED152 and Ruegeria pomeroyi. We found that ~0.1% of protein-encoding genes in Pelagibacter are under transcriptional control compared to >10% of genes in other marine bacteria. Regardless of the growth condition, the same genes were highly expressed while most genes were always expressed at very low levels. Quantitative RNA sequencing revealed that abundances of most Pelagibacter transcripts were <0.01 copies per cell whereas transcript abundances were 1 to 10 copies per cell in some other bacteria. Our results demonstrate that Pelagibacter can change growth without shifts in transcript levels, suggesting that transcriptional control plays a minimal role in the adaptive strategy for one of the most successful organisms in the biosphere.
Project description:The alphaproteobacterium "Candidatus Pelagibacter ubique" strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all "Ca. Pelagibacter ubique" genes downstream from the previously confirmed S-adenosyl methionine (SAM) riboswitches bhmT, mmuM, and metY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the heme c shuttle-encoding gene ccmC and two small genes of unknown function (SAR11_1163 and SAR11_1164). This bacterium's strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes, ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch. IMPORTANCE "Ca. Pelagibacter ubique" is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation.