Project description:The nematode Caenorhabditis elegans has evolutionarily conserved EV signaling pathways. In this study, we apply a recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of EVs from C. elegans. Our experiments uncovered diverse coding and non-coding RNA transcripts as well as protein cargo types commonly found in human EVs.
Project description:We utilized high-throughput RNA-seq to uncover the intermediate-sized noncoding RNAs invovled in UV-DNA Damage Responses in C. elegans. 450 novel transfrags were discovered, some of which show dramatic expression change between the UV irradiation and control. This study should lead to a better understanding of the role of is-ncRNAs invovled in UV-DDR. Examination of intermediate-sized transcripts (70-500nt) in L4 larvae of C. elegans strains, including wild-type (N2), UV-irradiated (N2-UV100J/m2) and NER-deficient mutant (xpa-1) strains.
Project description:We investigated the transcriptome of B. cenocepacia under infection of the nematode Caenorhabditis elegans. RNAs fractions extracted from C. elegans infected with B. cenocepacia were used for Illumina high throughput sequencing using the CappableSeq method. The main objective of this work was to identify small non-coding RNAs (sRNAs) expressed by B. cenocepacia under infection conditions.
Project description:microRNAs (miRNAs) are small non-coding RNA-molecules that influence translation by binding to the target gene mRNA. Many miRNAs are found in nested arrangements within introns, or exons, of larger protein-coding host genes. miRNAs and host genes in a nested arrangement are often transcribed simultaneously, which may indicate that both have similar functions. miRNAs have been implicated in regulating defense responses against pathogen infection in C. elegans and in mammals. Here, we asked if miRNAs in nested arrangements and their host genes are involved in the C. elegans response against infection with Bacillus thuringiensis (Bt). We performed miRNA sequencing and functional genetic analysis of miRNA and/or host gene in four nested arrangements. We identified mir-58.1 and mir-2 as negative regulators of C. elegans resistance to Bt infection. However, we did not find any miRNA/host gene pair in which both contribute to defense against Bt.