Project description:We established chromate transformed cell lines by chronic exposure of normal human bronchial epithelial BEAS-2B cells to low doses of hexavalent chromium followed by anchorage-independent growth. The gene expression profiles were analyzed in the established cell lines. The gene expression profiles from six chromate transformed cell lines were remarkably similar to each other yet differed significantly from that of either control cell line or normal Beas-2B cells. A total of 409 differentially expressed genes were identified in chromate transformed cells compared to control cells.
Project description:We established chromate transformed cell lines by chronic exposure of normal human bronchial epithelial BEAS-2B cells to low doses of hexavalent chromium followed by anchorage-independent growth. The gene expression profiles were analyzed in the established cell lines. The gene expression profiles from six chromate transformed cell lines were remarkably similar to each other yet differed significantly from that of either control cell line or normal Beas-2B cells. A total of 409 differentially expressed genes were identified in chromate transformed cells compared to control cells. We analyzed gene expression profiles from 10 cell lines ( six chromated transformed cells lines, three control cell lines, and parental BEAS-2B cells) using Affymetrix Human Gene 1.0 ST array. No techinical replicates were performed.
Project description:We report the differential expression of circRNAs between T-BEAS-2B cells (cadmium-transformed BEAS-2B cells) and C-BEAS-2B cells (passage-matched control BEAS-2B cells) by high-throughput sequencing. T-BEAS-2B cells are BEAS-2B cells transformed by cadmium at 2.0 μM for twenty weeks, and C-BEAS-2B cells are their passage-matched control. RNAs were sequenced on Illumina HiSeq Xten platform in triplicates, and expressions of circRNAs were calculated by TPM (transcripts per kilobase of exon model per million mapped reads). Clean data per sample exceeds 10 GB. We find 235 significantly up-regulated circRNAs and 271 significantly down-regulated circRNAs in T-BEAS-2B cells relative to C-BEAS-2B cells. Our work provides clues and evidence for exploring the mechanism of circRNAs in cadmium carcinogenesis.
Project description:MicroRNA levels in non-transformed BEAS-2B bronchial epithelial cells, two lines of mycoplasma transformed BEAS-2B cells, and A549 lung adenocarcinoma cells were measured. Microarray analyses of 1145 microRNAs in A549 lung adenocarcinoma cells and two other transformed lung cell types relative to BEAS-2B bronchial epithelial cells were performed. 106 miRNAs were down-regulated and 69 miRNAs were up-regulated in all three transformed lines
Project description:MicroRNA levels in non-transformed BEAS-2B bronchial epithelial cells, two lines of mycoplasma transformed BEAS-2B cells, and A549 lung adenocarcinoma cells were measured. Microarray analyses of 1145 microRNAs in A549 lung adenocarcinoma cells and two other transformed lung cell types relative to BEAS-2B bronchial epithelial cells were performed. 106 miRNAs were down-regulated and 69 miRNAs were up-regulated in all three transformed lines The control cells were the human non-transformed BEAS-2B cells (Lechner JF, LaVeck MA. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Culture Methods 9: 43-48, 1985). The BEAStra1 and BEAStra2 cells were replicate populations of BEAS-2B cells that were transformed following infection with mycoplasma (Jiang, S., Zhang, S., Langenfeld, J., Lo, S.C., and Rogers, M.B., Mycoplasma infection transforms normal lung cells and induces bone morphogenetic protein 2 expression by post-transcriptional mechanisms. J Cell Biochem. 104(2): 580-594, 2007). A459 lung adenocarcinoma cells were derived from a human lung tumor (Giard DJ, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51: 1417-1423, 1973. PubMed: 4357758).