Project description:Specific changes in gene expression during cancer initiation should enable discovery of biomarkers for risk assessment, early detection and targets for chemoprevention. It has been previously demonstrated that altered mRNA and proteome signatures of morphologically normal cells bearing a single inherited âhitâ in a tumor suppressor gene parallel many changes observed in the corresponding sporadic cancer. Here, we report on the global gene expression profile of morphologically normal, cultured primary breast epithelial and stromal cells from Li-Fraumeni syndrome (LFS) TP53 mutation carriers. Our analyses identified multiple changes in gene expression in both morphologically normal breast epithelial and stromal cells associated with TP53 haploinsufficiency, as well as interlocking pathways. Notably, a dysregulated p53 signaling pathway was readily detectable. Pharmacological intervention with the p53 rescue compounds CP-31398 and PRIMA-1 provided further evidence in support of the central role of p53 in affecting these changes in LFS cells and treatment for this cancer. Because loss of signaling mediated by TP53 is associated with the development and survival of many human tumors, identification of gene expression profiles in morphologically normal cells that carry âone-hitâ p53 mutations may reveal novel biomarkers, enabling the discovery of potential targets for chemoprevention of sporadic tumors as well. compare gene expression from different cell types
Project description:Specific changes in gene expression during cancer initiation should enable discovery of biomarkers for risk assessment, early detection and targets for chemoprevention. It has been previously demonstrated that altered mRNA and proteome signatures of morphologically normal cells bearing a single inherited “hit” in a tumor suppressor gene parallel many changes observed in the corresponding sporadic cancer. Here, we report on the global gene expression profile of morphologically normal, cultured primary breast epithelial and stromal cells from Li-Fraumeni syndrome (LFS) TP53 mutation carriers. Our analyses identified multiple changes in gene expression in both morphologically normal breast epithelial and stromal cells associated with TP53 haploinsufficiency, as well as interlocking pathways. Notably, a dysregulated p53 signaling pathway was readily detectable. Pharmacological intervention with the p53 rescue compounds CP-31398 and PRIMA-1 provided further evidence in support of the central role of p53 in affecting these changes in LFS cells and treatment for this cancer. Because loss of signaling mediated by TP53 is associated with the development and survival of many human tumors, identification of gene expression profiles in morphologically normal cells that carry “one-hit” p53 mutations may reveal novel biomarkers, enabling the discovery of potential targets for chemoprevention of sporadic tumors as well.
Project description:Whole Exome sequencing of two patients with Cardiac angiosarcoma in Li-Fraumeni-like families discovers that a mutation in the pot1 gene is responsible for cardiac angiosarcoma in tp53-negative li-fraumeni-like families
Project description:Multiple family members with cancer or individuals with multiple primary cancers are indicative of potential genetic etiology1. Germline mutations in TP53 cause a rare high penetrance cancer syndrome, Li Fraumeni Syndrome (LFS)2. We identified a TP53 tetramerization domain (TD) missense mutation c.1000G>C;p.G334R, in a family with LFS-associated cancers. Twenty-one additional probands were identified, and available tumors showed biallelic somatic inactivation of TP53. The majority of families were of Ashkenazi Jewish descent, and the TP53 c.1000G>C allele was found on a commonly inherited haplotype. While classical p53 target gene activation was maintained in p.G334R mutant cell lines treated with Nutlin-3a, a subset of p53 target genes, including PCLO, PLTP, PLXNB3 and LCN15, showed defective transactivation. Structural analysis demonstrated thermal instability of the mutant TD, and the G334R mutant protein showed increased preponderance of mutant conformation protein. TP53 c.1000G>C;p.G334R is a rare AJ-predominant mutation associated with low penetrance Li-Fraumeni Syndrome
2020-07-24 | GSE143741 | GEO
Project description:Li-Fraumeni syndrome in Tunisian patients
Project description:The TP53-R337H founder mutation exists at high frequency throughout southern Brazil and represents the most common germline TP53 mutation reported to date. It was originally identified in pediatric adrenocortical tumors in families with no reported history of cancer. The R337H mutation has since been found in association with early-onset breast cancers and Li-Fraumeni syndrome. To study this variability in tumor susceptibility we generated a knockin mutant p53 mouse model (R334H). Endogenous murine R334H is naturally expressed at abnormally high levels in multiple tissues and is functionally compromised in a cell type and stress-specific manner. The mutant p53 mice develop tumors with long latency and incomplete penetrance, consistent with many human carriers being at a low, but elevated risk for cancer We used microarrays to compare the global programme of gene expression in thymocytes obtained from WT or TP53R337H/R337H mutant mice that had either received 5 Gy whole body irradiation or no irradiation.
Project description:We report the application for high-throughput profiling of transcriptome, chromatin-associated proteins and histone-modifications on a genome-wide level in iPSC-derived family control astrocytes vs LFS (Li-Fraumeni Syndrome) patient astrocytes.
Project description:Breast cancer is the most common cancer in females, affecting one in every eight women and accounting for the majority of cancer-related deaths in women worldwide. Germline mutations in the BRCA1 and BRCA2 genes are significant risk factors for specific subtypes of breast cancer. BRCA1 mutations are associated with basal-like breast cancers, whereas BRCA2 mutations are associated with luminal-like disease. Defects in mammary epithelial cell differentiation have been previously recognized in germline BRCA1/2 mutation carriers even before cancer incidence. However, the underlying mechanism is largely unknown. Here, we employ spatial transcriptomics to investigate defects in mammary epithelial cell differentiation accompanied by distinct microenvironmental alterations in preneoplastic breast tissues from BRCA1/2 mutation carriers and normal breast tissues from non-carrier controls. We uncovered spatially defined receptor-ligand interactions in these tissues for the investigation of autocrine and paracrine signaling. We discovered that β1-integrin-mediated autocrine signaling in BRCA2-deficient mammary epithelial cells may differ from BRCA1-deficient mammary epithelial cells. In addition, we found that the epithelial-to-stromal paracrine signaling in the breast tissues of BRCA1/2 mutation carriers is greater than in control tissues. More integrin-ligand pairs were differentially correlated in BRCA1/2-mutant breast tissues than non-carrier breast tissues with more integrin receptor-expressing stromal cells. Implications: These results suggest alterations in the communication between mammary epithelial cells and the microenvironment in BRCA1 and BRCA2 mutation carriers, laying the foundation for designing innovative breast cancer chemo-prevention strategies for high-risk patients.
Project description:We hypothesized that the transcriptome of primary cultures of morphologically normal ovarian surface epithelial cells could be altered by the presence of a heterozygous BRCA1 or BRCA2 mutation. We aimed to discover early events associated to ovarian carcinogenesis, which could represent putative targets for preventive strategies of this silent killer tumor. We identified the first molecular signature associated with French Canadian BRCA1 or BRCA2 founder mutations in morphologically normal ovarian epithelial cells. We discovered that wild-type and mutated BRCA2 allelic transcripts were expressed not only in morphologically normal but also in tumor cells from 8765delAG BRCA2 carriers. Further analysis of morphologically normal ovarian and tumor cells from C4446T BRCA1 carriers lead to the same observation. Our data support the idea that one single hit in BRCA1 or BRCA2 is sufficient to alter the transcriptome of phenotypically normal ovarian epithelial cell. The highest level of BRCA2 mutated allele transcript expression was measured in cells originating from the most aggressive ovarian tumor. The penetrance of the mutation and the aggressiveness of the related tumor could depend on a dosage effect of the mutated allele transcript.