Project description:ChIP-chip was performed to identify the genomic binding locations for the termination factors Nrd1, and Rtt103, and for RNA polymerase (Pol) II phosphorylated at the tyrosine 1 and threonine 4 position of its C-terminal domain (CTD). In different phases of the transcription cycle, Pol II recruits different factors via its CTD, which consists of heptapeptide repeats with the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Here we show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr1, and that this impairs recruitment of termination factors. Tyr1 phosphorylation levels rise downstream of the transcription start site (TSS), and decrease before the polyadenylation (pA) site. Tyr1-phosphorylated gene bodies are depleted of CTD-binding termination factors Nrd1, Pcf11, and Rtt103. Tyr1 phosphorylation blocks CTD binding by these termination factors, but stimulates binding of elongation factor Spt6. These results show that CTD modifications can not only stimulate but also block factor recruitment, and lead to an extended CTD code for transcription cycle coordination.
Project description:In Saccharomyces cerevisiae short non-coding RNA (ncRNA) generated by RNA Polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3 and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is generally required for NRD-dependent transcription termination through the action of its CTD interacting domain (CID). Pcf11 localizes downstream of Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA and restricts Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar as both accumulate RNA:DNA hybrids and display Pol II pausing downstream of NRD terminators. We predict a mechanism whereby Nrd1 and Pcf11 exchange on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo.
Project description:In Saccharomyces cerevisiae short non-coding RNA (ncRNA) generated by RNA Polymerase II (Pol II) are terminated by the NRD complex consisting of Nrd1, Nab3 and Sen1. We now show that Pcf11, a component of the cleavage and polyadenylation complex (CPAC), is generally required for NRD-dependent transcription termination through the action of its CTD interacting domain (CID). Pcf11 localizes downstream of Nrd1 on NRD terminators, and its recruitment depends on Nrd1. Furthermore mutation of the Pcf11 CID results in Nrd1 retention on chromatin, delayed degradation of ncRNA and restricts Pol II CTD Ser2 phosphorylation and Sen1-Pol II interaction. Finally, the pcf11-13 and sen1-1 mutant phenotypes are very similar as both accumulate RNA:DNA hybrids and display Pol II pausing downstream of NRD terminators. We predict a mechanism whereby Nrd1 and Pcf11 exchange on chromatin facilitates Pol II pausing and CTD Ser2-P phosphorylation. This in turn promotes Sen1 activity that is required for NRD-dependent transcription termination in vivo. ChIP-seq with antibody against pol II in wild type and Pcf11 mutants: Pcf11-2, Pcf11-9 and Pcf11-13 grown at 25C and 37C along with input samples
Project description:At the 3'-ends of genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine 1 residues of its C-terminal domain (CTD), resulting in recruitment of transcription termination factors. We show that the multisubunit cleavage and polyadenylation factor (CPF) is a Pol II CTD phosphatase and its Glc7 subunit is required for Tyr1 dephosphorylation at the poly-adenylation site and Pol II termination in vivo. ChIP-chip was performed to examine the effect of Glc7 nuclear depletion on genome-wide Pol II occupancy [using ?-Rpb3 (1Y26, cat. no. W0012, neoclone) antibody] and CTD tyrosine 1 phosphorylation levels [using ?-TyrY1P (3D12, D. Eick) antibody].
Project description:Transcription termination is key to gene regulation as it prevents transcription interference with neighboring genes. In Saccharomyces cerevisiae, termination at protein-coding genes is coupled to the cleavage of the nascent transcript, while most non-coding RNA transcription relies on a cleavage-independent termination pathway involving Nrd1, Nab3 and the helicase Sen1 (NNS pathway). In both pathways, the recruitment of termination factors involves phosphorylated forms of the RNA polymerase II C-terminal domain (CTD) but the contribution of individual CTD residues was never systematically investigated. Here, we investigated the impact of mutating phosphorylation sites in the CTD on termination. We observed widespread termination defects at protein-coding genes in mutants for Ser2 or Thr4 but rare defects in Tyr1 mutants for this class of genes. Instead, mutating Tyr1, or its phosphatase Glc7, led to widespread termination defects at non-coding genes known to terminate via the NNS pathway. These defects can be suppressed by slowing down transcription, suggesting that Tyr1 mediates termination via the regulation of elongation or pausing. Our work redefines the role of Tyr1 in termination at protein-coding genes in budding yeast and highlights its key role in termination by the NNS pathway.
Project description:Transcription termination is key to gene regulation as it prevents transcription interference with neighboring genes. In Saccharomyces cerevisiae, termination at protein-coding genes is coupled to the cleavage of the nascent transcript, while most non-coding RNA transcription relies on a cleavage-independent termination pathway involving Nrd1, Nab3 and the helicase Sen1 (NNS pathway). In both pathways, the recruitment of termination factors involves phosphorylated forms of the RNA polymerase II C-terminal domain (CTD) but the contribution of individual CTD residues was never systematically investigated. Here, we investigated the impact of mutating phosphorylation sites in the CTD on termination. We observed widespread termination defects at protein-coding genes in mutants for Ser2 or Thr4 but rare defects in Tyr1 mutants for this class of genes. Instead, mutating Tyr1, or its phosphatase Glc7, led to widespread termination defects at non-coding genes known to terminate via the NNS pathway. These defects can be suppressed by slowing down transcription, suggesting that Tyr1 mediates termination via the regulation of elongation or pausing. Our work redefines the role of Tyr1 in termination at protein-coding genes in budding yeast and highlights its key role in termination by the NNS pathway.
Project description:We have generated single-nucleotide resolution, nascent transcription profiles from HeLa cells by developing Native Elongation Transcript sequencing technology for mammalian chromatin (mNET-seq). Our extensive data sets provide a substantial resource to study mammalian nascent transcript profiles. We reveal unanticipated phosphorylation states for RNA polymerase II C-terminal domain (Pol II CTD) at both gene ends. We also observe that following 5’ splice site cleavage by the spliceosome, upstream exon transcripts are tethered to Pol II CTD phosphorylated on the serine 5 position (S5P) which is accumulated over downstream exons. We further show that depletion of termination factors substantially reduces Pol II pausing at gene ends leading to termination defects. Remarkably termination factors play an additional promoter role by restricting non-productive RNA synthesis and redistributing Pol II CTD S2P to promoters. These data demonstrate that CTD phosphorylation is more dynamic and variably distributed across mammalian transcription units than previously envisaged. To monitor nascent RNA within the mammalian Pol II complex, and its association with different CTD phosphorylation states, we employed mNET-seq methodology on HeLa cells, complemented with direct sequencing of chromatin-bound RNA (ChrRNA-seq). mNET-seq was preformed using the antibodies 8WG16, CMA602, CMA603 and CMA601, which are specific for unphosphorylated CTD, Ser2 phosphorylation, Ser5 phosphorylation and all CTD isoforms, respectively. In another experiment, to evaluate the effect of transcription termination factors in nascent RNA production by Pol II, mNET-seq and complemented with ChrRNA-seq was preformed on HeLa cells transfected with siRNA against PTBP1, CPSF73, CstF64+CstF64tau or Xrn2, and the gene profiles were compared with profiles from HeLa transfected with siRNA for Luciferase generated by the same protocol.
Project description:Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is directed by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex and requires CTD-Ser2 phosphorylation. Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar RNAs (snoRNAs) is preformed by the Nrd1 complex, and requires CTD-Ser5 phosphorylation. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1 are more similar to loss of a subunit of the Ser5P binding Nrd1-complex, than to loss of Ser2P binding factors. Tiling array analysis of ctk1Δ reveals readthrough at several hundred sites, including snoRNAs, as reported previously, but also many cryptic unstable transcripts, stable untranslated transcripts (SUTs) and other transcripts. Surprisingly, neither loss of CTK1 nor a Pol II CTD-Ser2 substitution mutant results in a global defect in termination of mRNAs, indicating that Ser2P is not essential for proper termination of most mRNAs. At snoRNA, Nrd1 location is shifted downstream in ctk1∆, indicating defective release rather than recruitment of Nrd1. Weakening the interaction between Nrd1 and Pol II rescues the readthrough in ctk1∆, likely by facilitating Nrd1 release. The termination defect is kinase activity dependent, but cannot be completely explained by loss of CTD-Ser2 phosphorylation , a major substrate of Ctk1, suggesting the involvement of an additional substrate. Mutant alleles of the elongation factor Spt5 rescue ctk1∆-dependent readthrough, indicating a role for Spt5 in this process, perhaps as a substrate of Ctk1. The results show that Ctk1 is more intimately involved in termination of small non-coding RNAs than was previously assumed and lead to a model in which Ctk1 influences Spt5 activity to achieve this. Two channel microarrays were used. RNA isolated from a large amount of wt yeast from a single culture was used as a common reference. This common reference was used in one of the channels for each hybridization and used in the statistical analysis to obtain an average expression-profile for each deletion mutant relative to the wt. Two independent cultures were hybridized on two separate microarrays. For the first hybridization the Cy5 (red) labeled cRNA from the deletion mutant is hybridized together with the Cy3 (green) labeled cRNA from the common reference. For the replicate hybridization, the labels are swapped. Each gene is represented twice on the microarray, resulting in four measurements per mutant. Using the Erlenmeyer growth protocol up to five deletion strains were grown on a single day. In the tecan platereader, up to eleven deletion strains could be grown on a single day. Wt cultures were grown parallel to the deletion mutants to assess day-to-day variance.