Project description:The ubiquitous heterotrophic marine bacterium, Rugeria pomeroyi, was experimentally cultured under both environmentally realistic carbon conditions and with a tracer-level addition of 13C-labeled leucine. Bacterial protein biosynthesis was tracked through exponential and stationary growth phases. This combination of methods allowed for observation of real-time bacterial protein production of an environmentally relevant marine bacterium under low-carbon conditions to understand metabolic priorities during different growth phases.
Project description:The goal of this project was to identify bacterial transporters responsible for uptake of environmentally relevant marine metabolites. We used the model marine heterotrophic bacterium Ruegeria pomeroyi DSS-3, for which an arrayed library of single gene knockout mutants has been generated by selecting isolated from a barcoded transposon mutant library (BasSeq). Knockout mutants of putative transporters were grown on minimal medium with a single substrate as sole carbon source. Mutant defect was assessed by comparing the substrate drawdown of isolated mutants to drawdown by a pooled mutant library (BarSeq), a proxy for wildtype fitness.
Project description:The fungal endophyte Pestalotiopsis sp. 9143 was found naturally infected with the endohyphal bacterium Luteibacter mycovicinis 9143. The fungus can be cured of the bacterium by culturing on antibiotics and the bacterium can be isolated from the fungus by culturing at high temperatures or mechanical disruption. This study investigates the transcriptomes of both partners cultured indepedently (axenically) and in coculture. The goal was to understand the changes in gene expression that accompany partner presence in order to identify genes and pathways that may facilitate the interaction.
Project description:Ruegeria sp. strain KLH11, isolated from the marine sponge Mycale laxissima, produces a complex profile of N-acylhomoserine lactone quorum-sensing (QS) molecules. The genome sequence provides insights into the genetic potential of KLH11 to maintain complex QS systems, and this is the first genome report of a cultivated symbiont from a marine sponge.