Project description:Goal of this study was to assess the levels of protection and investigate cellular, humoral, and mucosal immune correlates on the functional and gene transcriptional levels in elite-controller macaques following high dose SIV challenge. Three experimental, post SIV smE660 challenge macaque jejunal samples were individually compared to four pre SIV smE660 challenge baseline samples.
Project description:Goal of this study was to assess the levels of protection and investigate cellular, humoral, and mucosal immune correlates on the functional and gene transcriptional levels in elite-controller macaques following high dose SIV challenge.
Project description:The primary objective of this study was to evaluate response to a SIV DNA-based vaccine that was adminstered via vivo electroporation (EP) in rhesus macaques to further understand the molecular correlates of protection against SIV. In this study, rhesus macaques were immunized with a DNA vaccine including individual plasmids encoding SIV gag, env, and pol alone, or in combination with a molecular adjuvant, plasmid DNA expressing the chemokine ligand 5 (RANTES), followed by EP. At eight month post-vaccination, animals were challenged with SIV. Standard immunological assays, flow-based activation analysis without ex vivo restimulation and high-throughput gene expression analysis were performed to determine the host response to each vaccine regimen.
Project description:The primary objective of this study was to evaluate response to a SIV DNA-based vaccine that was adminstered via vivo electroporation (EP) in rhesus macaques to further understand the molecular correlates of protection against SIV. In this study, rhesus macaques were immunized with a DNA vaccine including individual plasmids encoding SIV gag, env, and pol alone, or in combination with a molecular adjuvant, plasmid DNA expressing the chemokine ligand 5 (RANTES), followed by EP. At eight month post-vaccination, animals were challenged with SIV. Standard immunological assays, flow-based activation analysis without ex vivo restimulation and high-throughput gene expression analysis were performed to determine the host response to each vaccine regimen. The overall study was designed to evaluate the response to a SIV-DNA vaccination administered to animals via intramuscular electroporation. Chinese rhesus macaques were divided into three treatment groups (n=6 animals per group): Control (no vaccination), DNA vaccine alone (pCSIVgag, pCSIVpol, pCSIVenv), DNA vaccine with RANTES adjuvant (pCSIVgag, pCSIVpol, pCSIVenv, pmacRANTES). Eight months following the last vaccination, animals were infected with 25 MID of SIVmac251 and response to infection was monitored. RNA for microarray analysis was isolated from fresh PBMCs that were isolated from individual animals and treated overnight with a pool of overlapping SIV pol peptides or mock treated. Samples for microarray analysis were taken longitudinally at 8 months post-vaccination (pre-SIV challenge; biological n=5-6 per group for each treatment; technical n=2 for each sample) and at day 10 post-SIV challenge (n=5-6 per group for each treatment; technical n=2 for each sample).
Project description:The molecular mechanisms underlying HIV-induced inflammation remain incompletely defined although they associate with morbidity and progression to AIDS. Here we used non-human primate models of pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infection in respectively macaques and African green monkeys. We longitudinally analyzed DNA methylation changes in CD4+ T cells from lymph node and blood using species-compatible probes on human 450K methylation BeadArrays. Selected identified sites were validated using bisulfite-pyrosequencing of an independent cohort of uninfected, viremic and SIV controller macaques. Tissue- and species-specific DNA methylation changes were observed after SIV infection. The most affected genes in pathogenic SIV infection were related to metabolic pathways and Th1 signaling. SIV-infected macaques displayed increased insulin sensitivity early in the chronic phase of infection, which correlated with T cell activation. Moreover, DNA methylation changes in the Th1 pathway were associated with altered gene expression. Out of the 11 selected genes for validation, six genes showed differential methylation in viremic and uninfected macaques. In contrast, no significant differences were found between uninfected and SIV-controller macaques. In summary, pathogenic SIV infection associates with DNA methylation changes in genes related to metabolism and immune-regulation.
Project description:This study describes differential miRNA expression in intact colon tissue during acute SIV infection of rhesus macaques. Nine miRNAs were found to be significantly affected by infection, with 5 down-regulated and 4 up-regulated miRNAs. The expression of one upregulated miRNA was further characterized and found to be significantly elevated specifically in response to SIV replication and not immune activation/inflammation accompanying SIV infection. We performed TaqMan Low Density Array based high throughput miRNA analysis on intact colon tissue from 10 acutely SIV-infected and 5 uninfected control macaques. All SIV-infected animals were inoculated intravenously with 100TCID50 of SIV. Out of the ten, one animal each was at 7, 8 and 10DPI (days post infection), 3 each at 13 and 21DPI, and 1 at 29DPI. microRNA reverse transcription and preamplification was performed according to the manufacturerM-bM-^@M-^Ys recommendation. Data analysis was performed using RQ Manager 1.2.2 and DataAssist v3.01 software. Data was normalized using Global normalization method and multiple comparisons correction was performed using Benjamini-Hochberg method.
Project description:This study describes differential miRNA expression in intact colon tissue during acute SIV infection of rhesus macaques. Nine miRNAs were found to be significantly affected by infection, with 5 down-regulated and 4 up-regulated miRNAs. The expression of one upregulated miRNA was further characterized and found to be significantly elevated specifically in response to SIV replication and not immune activation/inflammation accompanying SIV infection.
Project description:Rhesus macaques (RMs) inoculated with live-attenuated Rev-Independent Nef¯ simian immunodeficiency virus (Rev-Ind Nef¯SIV) as adults or neonates controlled viremia to undetectable levels and showed no signs of immunodeficiency over 6-8 years of follow-up. We tested the capacity of this live-attenuated virus to protect RMs against pathogenic, heterologous SIVsmE660 challenges Blood PBMC Time after SIV infection: 2 weeks post SIV infection Infection:Rev-Ind Nef¯SIV
Project description:The study describes miRNA expression in intact duodenum following chronic delta 9 tetrahydrocannabinol (Δ9-THC) administration to SIV-infected rhesus macaques. Chronic Δ9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days post infection (DPI). At 60DPI, ~28% of miRNAs showed decreased expression in VEH/SIV compared to none in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149 and miR-187 previously shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage.
Project description:HIV/SIV associated oral mucosal disease/dysfunction (HAOMD) (gingivitis/periodontitis/salivary adenitis) represents a major comorbidity affecting HIV patients on anti-retroviral therapy. Using a systems biology approach, we investigated molecular changes (mRNA/microRNA) underlying HAOMD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (Δ9-THC)] in uninfected (n=5) and SIV-infected rhesus macaques untreated (VEH-untreated/SIV; n=7) or treated with vehicle (VEH/SIV; n=3) or Δ9-THC (THC/SIV; n=3). Relative to controls fewer mRNAs were upregulated in THC/SIV compared to VEH-untreated/SIV macaques. Gene enrichment analysis showed differential enrichment of biological functions involved in anti-viral defense, Type-I interferon, Toll-like receptor, RIG-1 and IL1R signaling in VEH-untreated/SIV macaques. We focused on the anti-ER-stress anterior gradient-2 (AGR2), epithelial barrier protecting and anti-dysbiotic WAP Four-Disulfide Core Domain 2 (WFDC2), and glucocorticoid-induced anti-inflammatory TSC22D3 (TSC22-domain family member 3) that were significantly downregulated in OPM of VEH-untreated/SIV macaques. All three proteins localized to minor salivary gland acini and secretory ducts and showed enhanced and reduced expression in OPM of THC/SIV and VEH/SIV macaques, respectively. Additionally, inflammation associated miR-21, miR-142-3p and miR-29b showed significantly higher expression in OPM of VEH-untreated/SIV macaques. TSC22D3 was validated as a target of miR-29b. These preliminary translational findings suggest that phytocannabinoids may safely and effectively reduce oral inflammatory responses in HIV/SIV and other diseases.