Project description:The filamentous fungus Aspergillus oryzae is an important microbial cell factory for industrial production of useful enzymes, such as α-amylase. In order to optimize the industrial enzyme production process, there is a need to understand fundamental processes underlying protein production, here under how protein production links to metabolism through global regulatory structures. In this study, two α-amylase-producing strains of A. oryzae, a wild type strain and a transformant strain containing additional copies of the α-amylase gene, were characterized at a systematic level. Based on integrated analysis of ome-data together with genome-scale metabolic network and flux calculation, we identified key genes, key enzymes, key proteins, and key metabolites involved in the processes of protein synthesis and secretion, nucleotide metabolism, and amino acid metabolism that can be the potential targets for improving industrial protein production. Keywords: Two Aspergillus oryzae strains and two different carbon sources Two carbon sources (glucose, maltose) with three biological replicates for A. oryzae strain A1560 and strain CF1.1
Project description:The filamentous fungus Aspergillus oryzae is an important microbial cell factory for industrial production of useful enzymes, such as α-amylase. In order to optimize the industrial enzyme production process, there is a need to understand fundamental processes underlying protein production, here under how protein production links to metabolism through global regulatory structures. In this study, two α-amylase-producing strains of A. oryzae, a wild type strain and a transformant strain containing additional copies of the α-amylase gene, were characterized at a systematic level. Based on integrated analysis of ome-data together with genome-scale metabolic network and flux calculation, we identified key genes, key enzymes, key proteins, and key metabolites involved in the processes of protein synthesis and secretion, nucleotide metabolism, and amino acid metabolism that can be the potential targets for improving industrial protein production. Keywords: Two Aspergillus oryzae strains and two different carbon sources
Project description:The aim of this work was to unveil the molecular mechanisms by which Streptomyces respond to a ROS intracellular imbalance and the effect of such response on the biosynthesis of secondary metabolites. The study was focused on the industrial actinomycete S. natalensis ATCC 27448 producer of the polyene pimaricin - an antifungal agent widely used in the food industry and promising for antiviral activity and stimulation of immune response.
Project description:The PFK-2/ FBPase-2 are important regulatory enzymes in the glycolytic and are present in all major eukaryotic taxa. However, unlike the well-studied animal and plant PFK-2/ FBPase-2, their functions in filamentous fungi remain little investigated. As a typical filamentous fungus and industrial microorganisms, M. thermophila was choose to investigate the functions of this gene. At the same time, the application of regulating this gene in improving metabolites production was also studied.
2022-09-28 | GSE214142 | GEO
Project description:Clostridium butyricum used in industrial production Genome sequencing
Project description:Clostridium acetobutylicum is a typical bacterium of major importance to industrial butanol production. In order to dissect the regulatory network pertaining to the industrial application of this bacterium, catabolite control protein A (CcpA) was investigated for its global function by DNA microarray.It showed that CcpA of C. acetobutylicum controls hundreds of genes, not only carbon metabolism, but also solvent production and sporulation in the life cycle.The results here demonstrated that CcpA is an important pleiotropic regulator related to some specific physiological and biochemical process in butanol-producing C. acetobutylicum.
Project description:The aim of this work was to unveil the molecular mechanisms by which Streptomyces respond to a ROS intracellular imbalance and the effect of such response on the biosynthesis of secondary metabolites. The study was focused on the industrial actinomycete S. natalensis ATCC 27448 producer of the polyene pimaricin - an antifungal agent widely used in the food industry and promising for antiviral activity and stimulation of immune response. Two-color microarray with common reference. The transcriptomes of S. natalensis ATCC 27448 (wild-type), S. natalensis CAM.02 (DsodF) and S. natalensis CAM.04 (DahpCD) were compared. Two time points were included: late exponential (T1) and early stationay (T2) phase. Biological triplicates were performed for each strain/time point. Genomic DNA of S. natalensis ATCC 27448 was used as common reference.