Project description:In this study, we report the identification of a five-locus copper-inducible regulon in Mycobacterium tuberculosis. The identification of a copper responsive regulon unique to pathogenic Mycobacteria suggests copper homeostasis must be maintained during an infection.
Project description:In this study, we report the identification of a five-locus copper-inducible regulon in Mycobacterium tuberculosis. The identification of a copper responsive regulon unique to pathogenic Mycobacteria suggests copper homeostasis must be maintained during an infection.
Project description:In this study, we report the identification of a five-locus copper-inducible regulon in Mycobacterium tuberculosis. The identification of a copper responsive regulon unique to pathogenic Mycobacteria suggests copper homeostasis must be maintained during an infection. WT and mutant Mtb cells were grown in Sauton's minimal media to early stationary phase (OD580 = 1.5) and treated with 500 mM copper sulfate (CuSO4) for four hours or the absence
Project description:In this study, we report the identification of a five-locus copper-inducible regulon in Mycobacterium tuberculosis. The identification of a copper responsive regulon unique to pathogenic Mycobacteria suggests copper homeostasis must be maintained during an infection. WT and mutant Mtb cells were grown in Sauton’s minimal media to early stationary phase (OD580 = 1.5) and treated with 500 mM copper sulfate (CuSO4) for four hours or the absence.
Project description:Purpose: CsoR, a copper responsive negative regulator of Mycobacterium tuberculosis has been shown to respond to copper and bind to its own regulon in in vitro experiments. Here we examine the role of CsoR in vivo by examining the impact of deletion of csoR on the host transcriptome. Methods: csoR was knocked out of M. tuberculosis H37Rv using the specialized transduction method developed by Bardarov et al (2002), followed by removal of the hygromycin marker with plasmid pYUB870. Both wild type and confirmed csoR knockout were grown in copper free Sauton's media to late log phase before harvesting for transcriptomic studies. RNA was extracted using a modified Trizol method prior to DNAse treatment and rRNA depletion. Sequencing was done on an Illumina HiSeq 2000, filtered for quality using the FASTX-Toolkit, and mapped using Bowtie, and counts per locus generated with BedTools in the Galaxy platform. Differential expression analysis was carried out in edgeR with significantly differentially expressed genes being identified as those with ≥|2| fold differential expression between ΔcsoR and wild type strains, and an FDR < 0.05. Results: We found that 223 genes were differentially expressed between the ΔcsoR and wild type strains, 52 induced and 71 repressed. Differential expression of 10 of these genes, 6 induced and 4 repressed, was confirmed by qRT-PCR using SYBR green methodology. The only copper responsive genes identified were those within the csoR operon: csoR, Rv0968, ctpV, Rv0970, suggesting that csoR may only regulate its own operon in response to copper. Genes in the RicR regulon, another copper responsive transcriptional regulator, were not significantly differentially expressed, but some of these copper inducible genes were slightly down regulated suggesting that copper levels may be lower in the mutant strain as compared to wild type. Notably, 44 of the 48 members of the dosR regulon, responsive to hypoxic and NO stress, were induced in the mutant vs wild type suggesting that csoR is necessary for maintaining homeostasis, likely through copper regulation, within the cell. Conclusions: We have shown that CsoR is likely only directly regulating its own operon in response to copper, however it is required to maintain homeostasis, preventing a hypoxia-type stress response in the absense of copper.
Project description:This SuperSeries is composed of the following subset Series: GSE34919: Genome-wide Definition of the SigF Regulon in Mycobacterium tuberculosis (ChIP-chip) GSE34922: Genome-wide Definition of the SigF Regulon in Mycobacterium tuberculosis (Expression) Refer to individual Series
Project description:We analyzed the genes expressed, or the transcriptome, of bacilli (Mycobacterium tuberculosis) growing in fatty acids as sole carbon source. Using new technologies to massively sequence of RNA molecules we identified a group of genes that provides novel insight regarding the metabolic pathways and transcriptional regulation of latent M. Tuberculosis.
Project description:We analyzed the genes expressed, or the transcriptome, of bacilli (Mycobacterium tuberculosis) growing in fatty acids as sole carbon source. Using new technologies to massively sequence of RNA molecules we identified a group of genes that provides novel insight regarding the metabolic pathways and transcriptional regulation of latent M. Tuberculosis. Comparative Transcriptomics between two carbon source (Dextrose, Long Fatty Acids), at two states of growth (Exponential and Stationary Phase)