Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. Transciptomic expression profiles indicated that genes involved in carbon/nitrogen metabolism, and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. Bradyrhizobium japonicum strains were grown in the soybean rhizosphere under two different CO2 concentrations. Transcriptional profiling of B. japonicum was compared between cells grown under elevated CO2 and ambient conditions. Four biological replicates of each treatment were prepared, and four microarray slides were used for each strain.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that atmospheric elevated CO2 concentration indirectly influences on expression of large number of Bradyrhizobium genes through soybean roots. In addition, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency.
Project description:Legumes interact with nodulating bacteria that convert atmospheric nitrogen into ammonia for plant use. This nitrogen fixation takes place within root nodules that form after infection of root hairs by compatible rhizobia. Using cDNA microarrays, we monitored gene expression in soybean (Glycine max) inoculated with the nodulating bacterium Bradyrhizobium japonicum 4, 8, and 16 days after inoculation (dai), time points that coincided with nodule development and the onset of nitrogen fixation. This experiment identified several thousand genes that were differentially expressed in response to B. japonicum inoculation. Expression of 27 genes was analyzed by qRT-PCR and their expression patterns mimicked the microarray results confirming integrity of analyses. The microarray results suggest that B. japonicum reduces plant defense responses during nodule development. In addition, the data revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational, post-translational) that is likely essential for development of the symbiosis and adjustment to an altered nutritional status. Keywords = symbiosis Keywords = nodulation Keywords = rhizobium Keywords = defense Keywords = ANOVA Keywords = plant loop design, 7 samples, 7 comparison, 2 technical repeats including dye swaps, 4 biological repeats
Project description:Legumes interact with nodulating bacteria that convert atmospheric nitrogen into ammonia for plant use. This nitrogen fixation takes place within root nodules that form after infection of root hairs by compatible rhizobia. Using cDNA microarrays, we monitored gene expression in soybean (Glycine max) inoculated with the nodulating bacterium Bradyrhizobium japonicum 4, 8, and 16 days after inoculation (dai), time points that coincided with nodule development and the onset of nitrogen fixation. This experiment identified several thousand genes that were differentially expressed in response to B. japonicum inoculation. Expression of 27 genes was analyzed by qRT-PCR and their expression patterns mimicked the microarray results confirming integrity of analyses. The microarray results suggest that B. japonicum reduces plant defense responses during nodule development. In addition, the data revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational, post-translational) that is likely essential for development of the symbiosis and adjustment to an altered nutritional status. Keywords = symbiosis Keywords = nodulation Keywords = rhizobium Keywords = defense Keywords = ANOVA Keywords = plant Keywords: nodulating vs not nodulating
Project description:Analysis of a Bradyrhizobium japonicum pmtA mutant. PmtA catalyzes the first of three consecutive methylation reactions leading to phosphatidylcholine (PC) formation in B. japonicum. Disruption of the pmtA gene results in a significantly reduced PC content causing a defect in symbiosis with the soybean host. This study provides the first insight into global transcriptomic changes of a bacterial phosphatidylcholine biosynthesis mutant. Cells of the pmtA mutant and the wild type were grown to mid-exponential phase in full medium (PSY) under aerobic culture conditions. Keywords: genetic modification
Project description:Analysis of a Bradyrhizobium japonicum pmtA mutant. PmtA catalyzes the first of three consecutive methylation reactions leading to phosphatidylcholine (PC) formation in B. japonicum. Disruption of the pmtA gene results in a significantly reduced PC content causing a defect in symbiosis with the soybean host. This study provides the first insight into global transcriptomic changes of a bacterial phosphatidylcholine biosynthesis mutant. Cells of the pmtA mutant and the wild type were grown to mid-exponential phase in full medium (PSY) under aerobic culture conditions. Keywords: genetic modification Comparative analyis of the B. japonicum pmtA mutant and the wild type grown under aerobic culture conditions.
Project description:The Bradyrhizobium japonicum NtrC regulatory protein influences gene expression in response to changes in intracellular nitrogen status. Under conditions of low nitrogen, phosphorylation of NtrC results in up-regulation of a number of genes involved in nitrogen metabolism and nitrogen acquisition. To better define the exact nature of NtrC’s influence on gene expression, a ntrC mutation was created in B. japonicum and transcriptional profiling was performed by DNA microarray analysis of both the mutant and wild type strains.
Project description:The Bradyrhizobium japonicum NtrC regulatory protein influences gene expression in response to changes in intracellular nitrogen status. Under conditions of low nitrogen, phosphorylation of NtrC results in up-regulation of a number of genes involved in nitrogen metabolism and nitrogen acquisition. To better define the exact nature of NtrC’s influence on gene expression, a ntrC mutation was created in B. japonicum and transcriptional profiling was performed by DNA microarray analysis of both the mutant and wild type strains.
Project description:PhyR is an unusual type of response regulator consisting of a receiver domain and an extracytoplasmic function (ECF) sigma factor-like domain. It was recently described as a master regulator of general stress response in Methylobacterium extorquens. Orthologues of this regulator are present in essentially all free-living Alphaproteobacteria. In most of them, phyR is genetically closely linked to a gene encoding an ECF sigma factor. Here, we investigate the role of these two regulators in the soybean symbiont Bradyrhizobium japonicum USDA110. Using deletion mutants and phenotypic assays, we showed that PhyR and the ECF sigma factor sigma(EcfG) are involved in heat shock and desiccation resistance upon carbon starvation. Both mutants had symbiotic defects on the plant hosts Glycine max (soybean) and Vigna radiata (mungbean). They induced fewer nodules than the wild type and these nodules were smaller, less pigmented, and their specific nitrogenase activity was drastically reduced 2 or 3 weeks after inoculation. Four weeks after infection, soybean nodule development caught up to a large extent whereas most mungbean nodules remained defective even 5 weeks after infection. Remarkably, both mutants triggered aberrant nodules on the different host plants with ectopically emerging roots. Microarray analysis revealed that PhyR and sigma(EcfG) control congruent regulons suggesting both regulators are part of the same signalling cascade. This finding was further substantiated by in vitro protein-protein interaction studies which are in line with a partner-switching mechanism controlling gene regulation triggered by phosphorylation of PhyR. The large number of genes of unknown function present in the PhyR/sigma(EcfG) regulon and the conspicuous symbiotic phenotype suggest that these regulators are involved in the Bradyrhizobium-legume interaction via yet undisclosed mechanisms. Comparative analysis of the B. japonicum phyR mutant 8402, ecfG mutant 8404 mutant and the wild type during exponential growth in rich medium (PSY) and after 24 hours starvation in carbon source-free minimal medium
Project description:Soybean root hair transcriptional response to their inoculation by the symbiotic bacteria B. japonicum involved in soybean nodulation. We used the first generation of an Affymetrix microarray to quantify the abundance of the transcripts from soybean root hair cells inoculated and mock-inoculated by B. japonicum. This experiment was performed on a time-course from 6 to 48 hours after inoculation.