ABSTRACT: Expression data of Arabidopsis thaliana wild-type plants and quadruple nas T-DNA insertion mutants grown under different Fe supply conditions
Project description:Essential metals such as iron are required for healthy plant growth. Fe is an important cofactor and catalytic element in many biological processes. Fe and other metals can also be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalisation. The NAS genes are supposed to play an important role in Fe homeostasis. They are coding for enzymes called nicotianaminesynthase (NAS), which synthesize nicotianamine (NA) by a one-step condensation reaction of three molecules S-adenosyl-methionine. NA acts as a chelator for Fe, Cu, Ni and Zn and might be involved in the transport and allocation of Fe throughout the plant. We generated quadruple T-DNA insertion mutant nas plants to investigate NA function as described in Klatte et al., 2009, Plant Physiol. The nas4x-1 plants show an interveinal leaf chlorosis when turning from vegetative to reproductive stage, which intensifies when growing under Fe deficiency conditions. nas4x-1 plants have strongly reduced NA contents and show an elevated Fe deficiency response in roots. By performing microarray experiments we want to reveal global changes on transcriptional level in roots and leaves of nas4x-1 mutant compared to wild type plants grown under Fe supply and Fe deficiency conditions, respectively. The loss of NAS genes has a strong impact on the regulation of other metal homeostasis genes and allows to draw conclusions about nicotianamine function in metal homeostasis of A.thaliana.
Project description:Essential metals such as iron are required for healthy plant growth. Fe is an important cofactor and catalytic element in many biological processes. Fe and other metals can also be toxic when present in excess. Therefore plants have mechanisms of metal homeostasis which involve coordination of metal ion transporters for uptake, translocation and compartmentalisation. The NAS genes are supposed to play an important role in Fe homeostasis. They are coding for enzymes called nicotianaminesynthase (NAS), which synthesize nicotianamine (NA) by a one-step condensation reaction of three molecules S-adenosyl-methionine. NA acts as a chelator for Fe, Cu, Ni and Zn and might be involved in the transport and allocation of Fe throughout the plant. We generated quadruple T-DNA insertion mutant nas plants to investigate NA function as described in Klatte et al., 2009, Plant Physiol. The nas4x-1 plants show an interveinal leaf chlorosis when turning from vegetative to reproductive stage, which intensifies when growing under Fe deficiency conditions. nas4x-1 plants have strongly reduced NA contents and show an elevated Fe deficiency response in roots. By performing microarray experiments we want to reveal global changes on transcriptional level in roots and leaves of nas4x-1 mutant compared to wild type plants grown under Fe supply and Fe deficiency conditions, respectively. The loss of NAS genes has a strong impact on the regulation of other metal homeostasis genes and allows to draw conclusions about nicotianamine function in metal homeostasis of A.thaliana. For this study, four-week old nas4x-1 mutant and wild type plants were exposed for 7 days to plant medium with and without Fe supply. These conditions have been established previously and have resulted in a reproducibly strong interveinal leaf chlorosis of nas4x-1 plants compared to wild type, especially upon Fe deficiency conditions. The experiment was repeated three times in consecutive weeks to obtain three independent biological repetitions. Rosette leaves and roots of five week-old plants were harvested, RNA was isolated and microarray hybridization was performed. 24 Total samples were analyzed. We generated the following pairwise comparisons: WT + Fe vs. – Fe, nas4x-1 + Fe vs. – Fe, + Fe WT vs. + Fe nas4x-1, - Fe WT vs. - Fe nas4x-1, roots and leaves
Project description:Arabidopsis thaliana Col-0 plants were compared to sir1-1 T-DNA insertion mutants to investigate transcript levels of sulfur metabolism related genes under standard conditions.
Project description:au10-14_fer - response of ein3eil1 mutants to fe deficiency - Response of ein3eil1 mutants to Fe deficiency - Wild type seedlings and ethylene insensitive ein3eil1 seedlings were germinated and grown in the presence of 50 µM Fe or absence of Fe (0 µM) on Hoagland medium agar plates until the age of 6 days. Under these growth conditions symptoms of Fe deficiency develop in the 0 Fe plants. Ethylene is known to promote Fe acquisition responses. Whole seedlings were harvested for transcriptome analysis, in a total of three biological replicates.
Project description:RNAseq transcriptome of leaves and roots of Arabidopsis thaliana Columbia-0 grown under control (ES media) and Fe-deficiency (-Fe +100 µM FRZ) conditions.
Project description:Tomato, a Strategy I model plant for Fe deficiency, is an important economical crop. The transcriptional responses induced by Fe deficiency in tomato roots were previously described (Zamboni et al., 2012). The changes in trascriptome caused by the supply of Fe to plants starved fro 1 week were described in relation to the different nature of chelating agents (Fe-WEHS, Fe-CITRATE and Fe-PS). Transcriptional profile obtained by roots (27-d) of 21-d-old tomato plants starved of iron (0 μM Fe-EDTA) for 1 week and supplied for 1 h with 1 μM of Fe as Fe-WEHS (supply_Fe_WEHS), Fe citrate (supply_Fe_CITRATE) and Fe-PS (supply_Fe_PS). Tomato plants were hydroponically grown in all three case of Fe supply. Three different biological replicates were used for each sample repeating the experiment three times. All samples were obtained pooling roots of six plants (27-d-old).
Project description:Total mRNA was extracted from the root tips (10 mm from the root apex) of wild-type plants (Col-0 accession) and stop1 mutants grown 5 days after germination under optimum conditions and then transferred for 16 hours to low phosphate(Pi), low pH, Al and Fe excess mediums.
Project description:RNAseq transcriptome of anthers of Arabidopsis thaliana Columbia-0 grown under control (1/2 Hoagland) and Fe deficiency conditions.
Project description:RNA-seq was performed on shoot and root from 42 day-old plants of nlps mutants and WT grown on sand under non-limiting nitrate supply (5mM).
Project description:au10-14_fer - response of ein3eil1 mutants to fe deficiency - Response of ein3eil1 mutants to Fe deficiency - Wild type seedlings and ethylene insensitive ein3eil1 seedlings were germinated and grown in the presence of 50 µM Fe or absence of Fe (0 µM) on Hoagland medium agar plates until the age of 6 days. Under these growth conditions symptoms of Fe deficiency develop in the 0 Fe plants. Ethylene is known to promote Fe acquisition responses. Whole seedlings were harvested for transcriptome analysis, in a total of three biological replicates. 12 dye-swap - gene knock out,treated vs untreated comparison