Project description:Abstract: Secretion occurs in all cells, with relatively low levels in most cells and extremely high levels in specialized secretory cells, such as those of the pancreas, salivary and mammary glands. Here, we report that the CrebA/Creb3-like family of bZip transcription factors functions to upregulate expression of both the general protein machinery required in all cells for secretion and of cell-type specific secreted proteins. Drosophila CrebA directly binds the enhancers of secretory pathway genes and is both necessary and sufficient to activate expression of every secretory pathway component gene examined thus far. Microarray profiling reveals that CrebA also upregulates expression of genes encoding cell type specific secreted components. Finally, we find that the human CrebA orthologues, Creb3L1 and Creb3L2, have the ability to upregulate the secretory pathway in non-secretory cell types. Goals: Creb3L1 is the closest related human orthologue of Drosophila CrebA. CrebA is required to upregulate genes encoding the protein machinery and cargo in specialized secretory cells. To determine if the human orthologues of CrebA, Creb3L1 and Creb3L2, perform the same function, we expressed the truncated active form of Creb3L1 in non-secretory HeLa cells. We then performed microarray experiments and found that active Creb3L1 is sufficient to upregulate genes encoding the protein machinery of the secretory pathway, as observed with Drosophila CrebA. HeLa cells were transiently co-transfected with truncated Creb3L1 (Creb3L1 T) and GFP. Following 20 hours in culture, GFP positive cells were isolated by FACS and RNA was extracted using the Rneasy kit (Qiagen). As a control, mock transfected cells were also subjected to cell sorting and RNA was extracted using the same protocols. At least three replicates were obtained for each group.
Project description:Abstract: Secretion occurs in all cells, with relatively low levels in most cells and extremely high levels in specialized secretory cells, such as those of the pancreas, salivary and mammary glands. Here, we report that the CrebA/Creb3-like family of bZip transcription factors functions to upregulate expression of both the general protein machinery required in all cells for secretion and of cell-type specific secreted proteins. Drosophila CrebA directly binds the enhancers of secretory pathway genes and is both necessary and sufficient to activate expression of every secretory pathway component gene examined thus far. Microarray profiling reveals that CrebA also upregulates expression of genes encoding cell type specific secreted components. Finally, we find that the human CrebA orthologues, Creb3L1 and Creb3L2, have the ability to upregulate the secretory pathway in non-secretory cell types. This SuperSeries is composed of the following subset Series: GSE23334: Active Creb3L1 can upregulate secretory pathway genes in HeLa cells GSE23346: CrebA is a major and direct regulator of secretory pathway gene expression Refer to individual Series
Project description:Abstract: Secretion occurs in all cells, with relatively low levels in most cells and extremely high levels in specialized secretory cells, such as those of the pancreas, salivary and mammary glands. Here, we report that the CrebA/Creb3-like family of bZip transcription factors functions to upregulate expression of both the general protein machinery required in all cells for secretion and of cell-type specific secreted proteins. Drosophila CrebA directly binds the enhancers of secretory pathway genes and is both necessary and sufficient to activate expression of every secretory pathway component gene examined thus far. Microarray profiling reveals that CrebA also upregulates expression of genes encoding cell type specific secreted components. Finally, we find that the human CrebA orthologues, Creb3L1 and Creb3L2, have the ability to upregulate the secretory pathway in non-secretory cell types. Goals: Creb3L1 is the closest related human orthologue of Drosophila CrebA. CrebA is required to upregulate genes encoding the protein machinery and cargo in specialized secretory cells. To determine if the human orthologues of CrebA, Creb3L1 and Creb3L2, perform the same function, we expressed the truncated active form of Creb3L1 in non-secretory HeLa cells. We then performed microarray experiments and found that active Creb3L1 is sufficient to upregulate genes encoding the protein machinery of the secretory pathway, as observed with Drosophila CrebA.
Project description:Abstract: Secretion occurs in all cells, with relatively low levels in most cells and extremely high levels in specialized secretory cells, such as those of the pancreas, salivary and mammary glands. Here, we report that the CrebA/Creb3-like family of bZip transcription factors functions to upregulate expression of both the general protein machinery required in all cells for secretion and of cell-type specific secreted proteins. Drosophila CrebA directly binds the enhancers of secretory pathway genes and is both necessary and sufficient to activate expression of every secretory pathway component gene examined thus far. Microarray profiling reveals that CrebA also upregulates expression of genes encoding cell type specific secreted components. Finally, we find that the human CrebA orthologues, Creb3L1 and Creb3L2, have the ability to upregulate the secretory pathway in non-secretory cell types. This SuperSeries is composed of the SubSeries listed below.
Project description:Abstract: Secretion occurs in all cells, with relatively low levels in most cells and extremely high levels in specialized secretory cells, such as those of the pancreas, salivary and mammary glands. Here, we report that the CrebA/Creb3-like family of bZip transcription factors functions to upregulate expression of both the general protein machinery required in all cells for secretion and of cell-type specific secreted proteins. Drosophila CrebA directly binds the enhancers of secretory pathway genes and is both necessary and sufficient to activate expression of every secretory pathway component gene examined thus far. Microarray profiling reveals that CrebA also upregulates expression of genes encoding cell type specific secreted components. Finally, we find that the human CrebA orthologues, Creb3L1 and Creb3L2, have the ability to upregulate the secretory pathway in non-secretory cell types. Goals: The goals of the microarray experiments were to identify additional targets of the CrebA transcription factor to learn the range of genes regulated by this transcription factor during embryogenesis. Previous work had indicated that CrebA upregulates the protein machinery of the early secretory pathway. Our new data now shows that in addition to the protein machinery, CrebA also upregulates genes encoding the protein cargo that is secreted from specialized secretory organs. RNA was isolated from stage 11-15 wild type Drosophila embryos and compared to RNA from CrebA null mutant embryos of the same age; all samples were hybridized to the Drosophila Genome 2.0 Affymetrix array. Three individual replicates were obtained for each sample.
Project description:Abstract: Secretion occurs in all cells, with relatively low levels in most cells and extremely high levels in specialized secretory cells, such as those of the pancreas, salivary and mammary glands. Here, we report that the CrebA/Creb3-like family of bZip transcription factors functions to upregulate expression of both the general protein machinery required in all cells for secretion and of cell-type specific secreted proteins. Drosophila CrebA directly binds the enhancers of secretory pathway genes and is both necessary and sufficient to activate expression of every secretory pathway component gene examined thus far. Microarray profiling reveals that CrebA also upregulates expression of genes encoding cell type specific secreted components. Finally, we find that the human CrebA orthologues, Creb3L1 and Creb3L2, have the ability to upregulate the secretory pathway in non-secretory cell types. Goals: The goals of the microarray experiments were to identify additional targets of the CrebA transcription factor to learn the range of genes regulated by this transcription factor during embryogenesis. Previous work had indicated that CrebA upregulates the protein machinery of the early secretory pathway. Our new data now shows that in addition to the protein machinery, CrebA also upregulates genes encoding the protein cargo that is secreted from specialized secretory organs.
Project description:Transcription factor Creb3l1 is a non-classical ER stress molecule that is emerging as an important component for cellular homeostasis, particularly within cell-types with high peptide secretory capabilities. We have previously shown that Creb3l1 serves an important role in body fluid homeostasis through its transcriptional control of the gene coding for antidiuretic hormone arginine vasopressin in the neuropeptide rich magnocellular neurons of the supraoptic nucleus. To identify other genes regulated by transcription factor Creb3l1 in secretory cells, we performed RNA-sequencing of Creb3l1 knockdown anterior pituitary mouse corticotroph cell line AtT20.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.