Project description:This SuperSeries is composed of the following subset Series: GSE24549: Exon level expression profiling of colorectal cancer tissue samples (test sample series). GSE24550: Exon level expression profiling of colorectal cancer tissue samples (validation sample series). Refer to individual Series
Project description:Colorectal cancer is a heterogeneous disease molecularly characterized by inherent genomic instabilities, chromosome instability and microsatellite instability. In the present study we propose transcriptome instability as an analogue to genomic instability on the transcriptome level. Exon microarray data from two independent series of altoghether 160 colorectal cancer tissue samples was used for global alternative splicing detection using the FIRMA algorithm (aroma.affymetrix). The sample-wise amounts of these alternative splicing scores exceeding a defined threshold (deviating exon usage amounts) were summarized to provide the basis for description of transcriptome instability. This characteristic was shown to be associated with splicing factor expression levels and patient survival in both independent sample series. We analyzed genome-wide expression at the exon-level for two independent series of colorectal cancer tissue biopsies using the Affymetrix Human Exon 1.0 ST platform. This series of samples represents the test series.
Project description:Colorectal cancer is a heterogeneous disease molecularly characterized by inherent genomic instabilities, chromosome instability and microsatellite instability. In the present study we propose transcriptome instability as an analogue to genomic instability on the transcriptome level. Exon microarray data from two independent series of altoghether 160 colorectal cancer tissue samples was used for global alternative splicing detection using the FIRMA algorithm (aroma.affymetrix). The sample-wise amounts of these alternative splicing scores exceeding a defined threshold (deviating exon usage amounts) were summarized to provide the basis for description of transcriptome instability. This characteristic was shown to be associated with splicing factor expression levels and patient survival in both independent sample series.
Project description:Colorectal cancer is a heterogeneous disease molecularly characterized by inherent genomic instabilities, chromosome instability and microsatellite instability. In the present study we propose transcriptome instability as an analogue to genomic instability on the transcriptome level. Exon microarray data from two independent series of altoghether 160 colorectal cancer tissue samples was used for global alternative splicing detection using the FIRMA algorithm (aroma.affymetrix). The sample-wise amounts of these alternative splicing scores exceeding a defined threshold (deviating exon usage amounts) were summarized to provide the basis for description of transcriptome instability. This characteristic was shown to be associated with splicing factor expression levels and patient survival in both independent sample series.
Project description:Colorectal cancer is a heterogeneous disease molecularly characterized by inherent genomic instabilities, chromosome instability and microsatellite instability. In the present study we propose transcriptome instability as an analogue to genomic instability on the transcriptome level. Exon microarray data from two independent series of altoghether 160 colorectal cancer tissue samples was used for global alternative splicing detection using the FIRMA algorithm (aroma.affymetrix). The sample-wise amounts of these alternative splicing scores exceeding a defined threshold (deviating exon usage amounts) were summarized to provide the basis for description of transcriptome instability. This characteristic was shown to be associated with splicing factor expression levels and patient survival in both independent sample series. We analyzed genome-wide expression at the exon-level for two independent series of colorectal cancer tissue biopsies using the Affymetrix Human Exon 1.0 ST platform. This series of samples represents the validation series.
Project description:By the use of whole genome transcription analysis, we aimed to develop a gene expression classifier to increase the likelihood of identifying stage II colorectal cancer (CRC) samples with a poor prognostic outcome. Gene expression measurement were measured by the GeneChip® Human Exon 1.0 ST Arrays from Affymetrix. We analyzed genome-wide expression at the gene-level for an independent series of colorectal cancer tissue biopsies using the Affymetrix Human Exon 1.0 ST platform.