Project description:This SuperSeries is composed of the following subset Series: GSE24726: Gene expression profile of mature plasmacytoid dendritic cells (PDC) after the deletion of transcription factor E2-2 GSE24740: Binding targets of transcription factor E2-2 in human plasmacytoid dendritic cells Refer to individual Series
Project description:The interferon-producing plasmacytoid dendritic cells (PDC) share common progenitors with antigen-presenting classical dendritic cells (cDC), yet they possess distinct morphology and molecular features resembling those of lymphocytes. It is unclear whether the unique cell fate of PDC is actively maintained in the steady state. We report that the deletion of transcription factor E2-2 from mature peripheral PDC caused their spontaneous differentiation into cells with cDC properties. This included the loss of PDC markers, increase in MHC class II expression and T cell priming capacity, acquisition of dendritic morphology and induction of cDC signature genes. Genome-wide chromatin immunoprecipitation revealed direct binding of E2-2 to key PDC-specific and lymphoid genes, as well as to certain genes enriched in cDC. Thus, E2-2 actively maintains the cell fate of mature PDC and opposes the “default” cDC fate, in part through direct regulation of lineage-specific gene expression programs.
Project description:The interferon-producing plasmacytoid dendritic cells (PDC) share common progenitors with antigen-presenting classical dendritic cells (cDC), yet they possess distinct morphology and molecular features resembling those of lymphocytes. It is unclear whether the unique cell fate of PDC is actively maintained in the steady state. We report that the deletion of transcription factor E2-2 from mature peripheral PDC caused their spontaneous differentiation into cells with cDC properties. This included the loss of PDC markers, increase in MHC class II expression and T cell priming capacity, acquisition of dendritic morphology and induction of cDC signature genes. Genome-wide chromatin immunoprecipitation revealed direct binding of E2-2 to key PDC-specific and lymphoid genes, as well as to certain genes enriched in cDC. Thus, E2-2 actively maintains the cell fate of mature PDC and opposes the “default” cDC fate, in part through direct regulation of lineage-specific gene expression programs.
Project description:The interferon-producing plasmacytoid dendritic cells (PDC) share common progenitors with antigen-presenting classical dendritic cells (cDC), yet they possess distinct morphology and molecular features resembling those of lymphocytes. It is unclear whether the unique cell fate of PDC is actively maintained in the steady state. We report that the deletion of transcription factor E2-2 from mature peripheral PDC caused their spontaneous differentiation into cells with cDC properties. This included the loss of PDC markers, increase in MHC class II expression and T cell priming capacity, acquisition of dendritic morphology and induction of cDC signature genes. Genome-wide chromatin immunoprecipitation revealed direct binding of E2-2 to key PDC-specific and lymphoid genes, as well as to certain genes enriched in cDC. Thus, E2-2 actively maintains the cell fate of mature PDC and opposes the “default” cDC fate, in part through direct regulation of lineage-specific gene expression programs. Cells of the human PDC lymphoma line CAL-1 (Maeda et al., Int J Hematol 2005) were crosslinked with formaldehyde, sonicated, and subjected to immunoprecipitation with anti-E2-2 mAb (Bain et al., Mol Cell Biol 1993) or mouse IgG control as described (Cisse et al., Cell 2008). After crosslink reversal, the isolated chromatin was amplified, labeled and hybridized to Human Promoter ChIP-on-chip Microarray Set (Agilent Technologies). Hybridized microarrays were scanned and analyzed using DNA Analytics software (Agilent Technologies).
Project description:The interferon-producing plasmacytoid dendritic cells (PDC) share common progenitors with antigen-presenting classical dendritic cells (cDC), yet they possess distinct morphology and molecular features resembling those of lymphocytes. It is unclear whether the unique cell fate of PDC is actively maintained in the steady state. We report that the deletion of transcription factor E2-2 from mature peripheral PDC caused their spontaneous differentiation into cells with cDC properties. This included the loss of PDC markers, increase in MHC class II expression and T cell priming capacity, acquisition of dendritic morphology and induction of cDC signature genes. Genome-wide chromatin immunoprecipitation revealed direct binding of E2-2 to key PDC-specific and lymphoid genes, as well as to certain genes enriched in cDC. Thus, E2-2 actively maintains the cell fate of mature PDC and opposes the “default” cDC fate, in part through direct regulation of lineage-specific gene expression programs. Inducible deletion of E2-2 (Tcf4) has been performed by administering tamoxifen to conditional E2-2flox/flox Rosa26-CreER+ mice or to E2-2flox/flox Rosa26-CreER- control littermates. Four or six days later total splenocytes were isolated, pooled from 2-3 mice and PDC (CD11b- B220+ CD11clow Bst2+) were isolated by sorting. Global gene expression profiles of E2-2-deficient (null) and control (Ctrl) PDC were compared using Affymetrix microarrays (GPL1261).
Project description:The transcription factor IRF8 is a critical regulator of plasmacytoid dendritic cell (pDC) and classical dendritic cell (cDC) development in both mouse and man. Yet the downstream molecular targets that regulate DC homeostasis and development are largely unknown. A recent study using gene expression analysis of IRF8-deficient myeloid and lymphoid progenitors identified the Myc paralog Mycl1 as a potential transcriptional target of IRF8. We report here that Mycl1 is a mediator of DC homeostasis at steady state and during inflammation, and its expression is regulated by IRF8 in multiple DC lineages. We have further validated these observations with ChIP-Seq of IRF8 binding to the Mycl1 locus. Notably, IRF8 binding to Mycl1 locus is independent of an interaction with the AP1 factor, BATF3. Additionally, our genome-wide survey of IRF8 binding identified both EICE and AICE motifs. Examination of IRF8 binding in dendritic cells
Project description:E protein transcription factors specify major immune cell lineages including lymphocytes and interferon-producing plasmacytoid dendritic cells (pDCs). Corepressors of the ETO family can bind to and block transactivation by E proteins, but the physiological role of these interactions remained unclear. We report that ETO protein Mtg16 binds chromatin primarily through the pDC-specific E protein E2-2 in human pDCs. Mtg16-deficient mice showed impaired pDC development and functionality, whereas the specification of the classical dendritic cells (cDCs) was enhanced. The deletion of Mtg16 caused aberrant expression of E protein antagonist Id2 in pDCs. Thus, Mtg16 acts as a cofactor of E2-2 to promote pDC differentiation and restrict cDC development, revealing an unexpected positive role of ETO proteins in E protein activity. Analysis of E2-2 and Mtg16 immunoprecipitated chromatin from CAL-1 cell line.