Project description:This SuperSeries is composed of the following subset Series: GSE24815: Transcriptional changes in Sohlh1/Sohlh2 double knockout mouse newborn ovaries GSE24816: Transcriptional changes in Sohlh1 knockout and Sohlh2 knockout mouse newborn ovaries Refer to individual Series
Project description:Sohlh1 and Sohlh2 are germ cell-specific basic helix-loop-helix transcription factors critical in early folliculogenesis. Differential genes expression by both Sohlh1 and Sohlh2 deficiency in mouse newborn ovaries was accessed using microarray. RNA samples from Sohlh1/ Sohlh2 double knockout and wild-type newborn ovaries were arrayed on the Illumina beadchip mouse WG-6 2.0. Total RNA isolated from wildtype and Sohlh1/Sohlh2 double KO mouse newborn ovary were used to run Illumina BeadChip MouseWG-6 2.0 arrays.
Project description:Sohlh1 and Sohlh2 are germ cell-specific basic helix-loop-helix transcription factors critical in early folliculogenesis. Differential genes expression by both Sohlh1 and Sohlh2 deficiency in mouse newborn ovaries was accessed using microarray. RNA samples from Sohlh1/ Sohlh2 double knockout and wild-type newborn ovaries were arrayed on the Illumina beadchip mouse WG-6 2.0.
Project description:Sohlh1 and Sohlh2 are germ cell-specific basic helix-loop-helix transcription factors critical in early folliculogenesis. We discovered that Sohlh1 and Sohlh2 knockout females lose oocytes after birth and few remains by postnatal day 14. Here, we show that many genes preferentially expressed in the oocytes are misregulated by Sohlh1 and/or Sohlh2 deficiency. Total RNA samples isolated from wildtype, Sohlh1 KO and Sohlh2 KO mouse newborn ovaries were arrayed on the Illumina BeadChip MouseWG-6 2.0 arrays. We have 4 replicates for wildtype and Sohlh1 KO and 3 replicates for Sohlh2 KO.
Project description:Lhx8 is a member of the LIM-homeobox transcription factor family and preferentially expressed in oocytes and germ cells within the mouse ovary. We discovered that Lhx8 knockout females lose oocytes within 7 days after birth. At the time of birth, histological examination shows that Lhx8 deficient (Lhx8(-/-)) ovaries are grossly similar to the newborn wild type ovaries. Lhx8(-/-) ovaries fail to maintain the primordial follicles and the transition from primordial to growing follicles does not occur. Lhx8(-/-) ovaries misexpress oocyte-specific genes such as Gdf9, Pou5f1, and Nobox. Very rapid loss of oocytes may partly be due to drastic the down-regulation of Kit and Kitl in Lhx8(-/-) ovaries. We compared Lhx8(-/-) and wild-type ovaries using Affymetrix 430 2.0 microarray platform. Eighty (44%) of 180 of the genes down-regulated more than 5-fold in Lhx8(-/-) ovaries were preferentially expressed in oocytes, whereas only 3 (2%) of 146 genes up-regulated more than 5-fold in the absence of Lhx8 were preferentially expressed in oocytes. In addition, the comparison of genes regulated in Lhx8(-/-) and Nobox(-/-) newborn ovaries discovered a common set of 34 genes whose expression level is affected in both Lhx8 and Nobox deficient mice. Our findings show that Lhx8 is a critical factor for maintenance and differentiation of the oocyte during early oogenesis and it acts in part by down-regulating the Nobox pathway. This SuperSeries is composed of the following subset Series: GSE7774: Transcriptional changes in Lhx8 Null newborn mouse ovaries GSE7775: Microarray Analyses of Newborn Mouse Ovaries Lacking Nobox GSE7776: Ovarian Transcript Expression in Newborn Mouse Refer to individual Series
Project description:Germ-cell transcription factors control gene networks that regulate primordial follicle formation and oocyte differentiation during early, postnatal mouse oogenesis. Taking advantage of gene-edited mice lacking transcription factors expressed in female germ cells, we analyzed global gene expression profiles in perinatal ovaries from wildtype, FiglaNull, Lhx8Null and SohlhNull mice. Figla deficiency dysregulates expression of meiosis-related genes (e.g., Sycp3, Rad51 and Msy2) and a variety of genes (e.g., Nobox, Lhx8, Taf4b, Sohlh1, Sohlh2 and Gdf9) associated with oocyte growth and differentiation. The absence of FIGLA significantly impedes meiotic progression, causes DNA damage and results in oocyte apoptosis. Moreover, we find that FIGLA and other transcriptional regulators (e.g., NOBOX, LHX8, SOHLH1 and SOHLH2) are co-expressed in the same subset of germ cells in perinatal ovaries and Figla ablation dramatically disrupts KIT, NOBOX, LHX8, SOHLH1 and SOHLH2 expression. In addition, not only do FIGLA, SOHLH1 and LHX8 cross-regulate each other, they also cooperate by direct interaction with each during early oocyte development and share downstream gene targets. Thus, our findings substantiate a major role for FIGLA, LHX8 and SOHLH1 as multifunctional regulators of networks necessary for oocyte maintenance and differentiation during early folliculogenesis.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.