Project description:Our first aim was understand whole genome expression dynamics of Pseudomonas putida KT2440 surface colonies under water stress. Therefore, we wanted to identify significantly differentially expressed genes of at -0.4 MPa matric potential relative to the -0.5 kPa (near saturation condition) at different stress durations. Aliquots of overnight grown P. putida KT2440 cells were inoculated (approx. 100 µl and 1x107 cells) on the surface of ceramic plates. Prior to matric stress, the cells were incubated for 120, 116, 96, and 48 hr at-0.5 kPa to allow formation of a mature cell loan. -0.4 MPa matric potential was applied for the last 0 (control), 4, 24, and 72 hr of incubation periods, respectively, so that the total incubation time (at (-0.5 kPa) and (-0.4 MPa)) was kept constant as 5 days. Our second aim was to find out how the gene expression profile would change when we use PEG-8000 to simulate matric stress. To that effect, similar incubations were performed where the direct matric potential was -0.5 kPa, but supplemented with PEG-8000 to set a matric potential equivalent of -0.5 or -1.0 MPa. Incubations were again 5 days. In addition, we tested the effect of gas pressure on gene expression profile of cells in liquid medium. 20 ml of overnight grown KT2440 cells were exposed to 0.4 MPa (gauge) and 0.1 MPa (atmospheric) pressures.
Project description:Our first aim was understand whole genome expression dynamics of Pseudomonas putida KT2440 surface colonies under water stress. Therefore, we wanted to identify significantly differentially expressed genes of at -0.4 MPa matric potential relative to the -0.5 kPa (near saturation condition) at different stress durations. Aliquots of overnight grown P. putida KT2440 cells were inoculated (approx. 100 µl and 1x107 cells) on the surface of ceramic plates. Prior to matric stress, the cells were incubated for 120, 116, 96, and 48 hr at-0.5 kPa to allow formation of a mature cell loan. -0.4 MPa matric potential was applied for the last 0 (control), 4, 24, and 72 hr of incubation periods, respectively, so that the total incubation time (at (-0.5 kPa) and (-0.4 MPa)) was kept constant as 5 days. Our second aim was to find out how the gene expression profile would change when we use PEG-8000 to simulate matric stress. To that effect, similar incubations were performed where the direct matric potential was -0.5 kPa, but supplemented with PEG-8000 to set a matric potential equivalent of -0.5 or -1.0 MPa. Incubations were again 5 days. In addition, we tested the effect of gas pressure on gene expression profile of cells in liquid medium. 20 ml of overnight grown KT2440 cells were exposed to 0.4 MPa (gauge) and 0.1 MPa (atmospheric) pressures. Matric Stress Experiments: we had 3 to 4 replicates for each time point and controls (-0.5 kPa). These were kept under -0.4 MPa stress at 4 hr (P4), 24 hr (P24), 72 hr (P72), and controls kept at -0.5 kPa (C).
Project description:Alginate, a major exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role of different EPS under water stress. To create environmentally realistic water stress conditions as observed in soil, we used Pressurized Porous Surface Model (PPSM). Our main hypothesis was that under water stress, absence of alginate would be compensated by the other EPS. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 WT and its mutants deficient in either alginate or all known EPS A custom-made Nimblegen (WI, USA) whole genome one-color oligonucleotide expression array (12x135K with 45-60 mer probes) of P. putida KT2440 was used to investigate effect of water stress on the differential expression of the whole genome. In this study Pseudomonas putida KT2440 wild type (WT) and two of its mutants deficient either in alginate (Alg-), or all known EPS (EPS-) production were used and grown under dry (water stress) and wet (without water stress) conditions. (Deleted genes in Alg-: PP1277-PP128; in EPS-: PP1277-1288 (alg) + PP2634-2638 (bcs) + PP3132-3142 (pea) + PP1795-1788 (peb)) (Nilsson et al., 2011).39. Nilsson, M., Chiang, W.C., Fazli, M., Gjermansen, M., Givskov, M., and Tolker-Nielsen, T. (2011) Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environ Microbiol. 13 (5):1 357-1369
Project description:KaiC is the central cog of the circadian clock in Cyanobacteria. Close homologs of this protein are widespread among bacteria not known to have a circadian physiology. The function, interaction network, and mechanism of action of these KaiC homologs are still largely unknown. Here, we focus on KaiC homologs found in environmental Pseudomonas species. We characterize experimentally the only KaiC homolog present in Pseudomonas putida KT2440 and Pseudomonas protegens CHA0. Through phenotypic assays and transcriptomics, we show that KaiC is involved in osmotic and oxidative stress resistance in P. putida and in biofilm production in both P. putida and P. protegens.
Project description:The bacterium Pseudomonas putida KT2440 has the ability to reduce selenite forming nanoparticles of elemental selenium. This is the transcriptome of the organism when cultured in the presence of selenite.
Project description:Genome-wide scanning of gene expression by microarray techniques was successfully performed on RNA extracted from a sterilized soil inoculated with Pseudomonas putida KT2440/pSL1, which contains a chloroaromatic degrading plasmid, in the presence or absence of 3-chlorobenzoic acid (3CB). The genes showing significant changes in their expression in both triplicate microarray analyses using amplified RNA and single microarray analysis using unamplified RNA were investigated. Pathway analysis revealed that the benzoate degradation pathway underwent the most significant changes following treatment with 3CB. Analysis based on categorization of differentially expressed genes against 3CB revealed new findings about the cellular responses of the bacteria to 3CB, including upregulation of the genes specifically involved in transport of 3CB, and induction of a K+/H+ antiporter complex, an universal stress protein, two cytochrome P450 proteins and an efflux transporter. Downregulated expression of some genes involved in carbon metabolism and the genes belong to a prophage in the presence of 3CB was observed. This study demonstrated the applicability of the method of soil RNA extraction for microarray analysis through a proof-of-concept experiment using a sterilized soil inoculated with Pseudomonas putida KT2440/pSL1. A study using total RNA extracted from soil cultures of Pseudomonas putida KT2440/pSL1. Each chip measures the expression level of 5,341 genes from the Pseudomonas putida KT2440 genome with two sets of six 60-mer probes per gene.
Project description:Gene expression patterns of the plant colonizing bacterium,Pseudomonas putida KT2440 were evaluated as a function of growth in the Arabidopsis thaliana rhizosphere. Gene expression in rhizosphere grown P. putida cells was compared to gene expression in non-rhizosphere grown cells. Keywords: Gene expression
Project description:Transcriptome profiling of Pseudomonas putida KT2440 comparing cells exposed for 1 hour to DIMBOA from maize (Zea mays) to unexposed cells
Project description:Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Here, we explored membrane adaptations of Pseudomonas putida KT2440, in particular outer membrane vesicle (OMV) formation in response to 1-octanol, PQS and prodigiosin, causing chemical membrane stress via RNA-seq of mRNA. Pseudomonas putida wild type KT2440 (Nelson et al. 2002) and the derived strains P. putida pig21 were cultivated in biological triplicates under continuous shaking (130 rpm) at 30 °C in 10 mL LB (lysogeny broth) medium (10 g L-1 tryptone, 5 g L-1 yeast extract, 10 g L-1 sodium chloride; Carl Roth®, Karlsruhe, Germany). Antibiotics were added to the culture medium when appropriate to the following final concentrations: 25 µg mL-1 kanamycin, 25 µg mL-1 irgasan, 25 µg mL-1 gentamicin, 50 µg mL-1 tetracycline. For chemical induction of OMV formation, P. putida KT2440 was exposed to 1 mM 1-octanol or 50 µM PQS (Pseudomonas quinolone signal) after reaching the logarithmic growth phase. For transcriptome analysis, cells were cultivated as described above, the cell pellet was harvested after 7 h, adjusted to an optical density (OD700 nm) of 1 and flash frozen . Total RNA was isolated from 3 biological replicates using Quick-RNA Miniprep Plus kit (Zymo Research). The samples were treated with DNase (Zymo Research) and RNA was again purified with an RNA Clean&Concentrator-5 kit (Zymo Research). Ribosomal rRNA was removed with a riboPOOL for bacteria (siTOOLs Biotech GmbH). The purity of RNA and removal of rRNA was then tested with an Agilent RNA Pico 6000 kit and an Agilent 2100 Bioanalyzer (Agilent Technologies). TruSeq Stranded mRNA Sample Preparation guide (Illumina) was then used to construct the cDNA library. The constructed cDNA library was then sequenced with Illumina NextSeq500 high output mode paired end using a read length of 75 bases.