Project description:The Baltic Sea is one of the largest brackish water bodies in the world. Redoxclines that form between oxic and anoxic layers in the deepest sub-basins are a semi-permanent character of the pelagic Baltic Sea. The microbially mediated nitrogen removal processes in these redoxclines have been recognized as important ecosystem service that removes large proportion of the nitrogen load originating from the drainage basin. However, nitrification, which links mineralization of organic nitrogen and nitrogen removal processes, has remained poorly understood. To gain better understanding of the nitrogen cycling in the Baltic Sea, we analyzed the assemblage of ammonia oxidizing bacteria and archaea in the central Baltic Sea using functional gene microarrays and measured the biogeochemical properties along with potential nitrification rates. Overall, the ammonia oxidizer communities in the Baltic Sea redoxcline were very evenly distributed. However, the communities were clearly different between the eastern and western Gotland Basin and the correlations between different components of the ammonia oxidizer assemblages and environmental variables suggest ecological basis for the community composition. The more even community ammonia oxidizer composition in the eastern Gotland Basin may be related to the constantly oscillating redoxcline that does not allow domination of single archetype. The oscillating redoxcline also creates long depth range of optimal nitrification conditions. The rate measurements suggest that nitrification in the central Baltic Sea is able to produce all nitrate required by denitrification occurring below the nitrification zone.
Project description:In this study, transcriptomics was used to investigate Atlantic salmon (Salmo salar) sampled from three different field locations within Baltic Sea (Baltic Main Basin (CBS), Gulf of Finland (GoF) and Bothnian Sea (BS)) during marine migration. RNA labeling, hybridizations, and scanning were performed by the Finnish Microarray and Sequencing Centre in Turku Centre for Biotechnology.
Project description:The Atlantic cod (Gadus morhua L.) is one of the most important species in the Baltic Sea with high ecological and economical value. To explore the differences in adaptation to salinity between Baltic cod subpopulation: western (Kiel Bight) and eastern (Gdańsk Bay) samples were analyzed through genome-wide oligonucleotide microarray.