Project description:adt06-04_mirna_nitrogen - mirna_nitrogen - Nitrogen starvation and re-supply. - To discover miRNA implied following a deficiency out of nitrogen and after reinduction.
Project description:adt06-04_mirna_nitrogen - mirna_nitrogen - Nitrogen starvation and re-supply. - To discover miRNA implied following a deficiency out of nitrogen and after reinduction. 6 dye-swap - time course
Project description:gnp3-b4_nitrogen_starvation - nitrogen starvation and re-supply - What are the transcriptomic short- and long-term plant responses to nitrogen starvation and nitrogen re-supply? - WS Arabidopsis ecotype were grown on 6mM nitrate as sole nitrogen source during 35 days under short days . At T0, plants were then starved for nitrate for 10 days and root and shoot samples were harvested separately 2 and 10 days after treatment (T2, T10). Then, nitrate (6 mM) was re-supplied for 1 and 24 hours (T+1, T+24). Keywords: time course
Project description:Plants aquire nitrogen from the soil, most commonly in the form of either nitrate or ammonium. Unlike ammonium, nitrate must be reduced (with NADH and ferredoxin as electron donors) prior to assimilation. Thus, nitrate nutrition imposes a substantially greater energetic cost than ammonium nutrition. Our goal was to compare the transcriptomes of nitrate-supplied and ammonium-supplied plants, with a particular interest in characterizing the differences in redox metabolism elicited by different forms of inorganic nitrogen. We used microarrays to compare the short-term transcriptional response to either nitrogen supply or ammonium supply in Arabidopsis roots. Genes upregulated or downregulated by nitrate only, ammonium only, or both ammonium and nitrate were identified and analyzed.
Project description:Plants aquire nitrogen from the soil, most commonly in the form of either nitrate or ammonium. Unlike ammonium, nitrate must be reduced (with NADH and ferredoxin as electron donors) prior to assimilation. Thus, nitrate nutrition imposes a substantially greater energetic cost than ammonium nutrition. Our goal was to compare the transcriptomes of nitrate-supplied and ammonium-supplied plants, with a particular interest in characterizing the differences in redox metabolism elicited by different forms of inorganic nitrogen. We used microarrays to compare the short-term transcriptional response to either nitrogen supply or ammonium supply in Arabidopsis roots. Genes upregulated or downregulated by nitrate only, ammonium only, or both ammonium and nitrate were identified and analyzed. Arabidopsis thaliana (Col-0) plants were grown hydroponically until they reached growth stage 5.10. They were then transferred to a nitrogen-free medium for 26 hr and then supplied with 1 mM nitrate or 1 mM ammonium. RNA isolation (and subsequent microarray analysis) was performed on root tissue isolated just before nitrogen supply (time 0) and at 1.5 hr and 8 hr after nitrogen supply (1.5 hr nitrate, 8 hr nitrate, 1.5 hr ammonium, 8 hr ammonium).
Project description:Autophagy is a vital cellular process that maintains organismal health by recycling damaged or superfluous cellular components within autophagosomes. This process is mediated by conserved ATG proteins, which coordinate autophagosome biogenesis and selective cargo degradation. Among these, the ubiquitin-like ATG8 protein plays a central role by linking cargo to the growing autophagosomes through interactions with selective autophagy receptors. Unlike most ATG proteins, which are represented by single or few isoforms, the ATG8 gene family is expanded in vascular plants, yet the extent of functional specialization within ATG8 isoforms remains largely unknown. Using transcriptional and translational reporters in Arabidopsis thaliana, we revealed that ATG8 isoforms are differentially expressed across tissues and form distinct autophagosomes within the same cell. To explore ATG8 specialization, we generated the nonuple Δatg8mutant lacking all nine ATG8 isoforms. The mutant displayed hypersensitivity to carbon and nitrogen starvation, coupled with defects in bulk and selective autophagy as shown by biochemical and ultrastructural analyses. Complementation experiments demonstrated that ATG8A could rescue both carbon and nitrogen starvation phenotypes, whereas ATG8H could only complement carbon starvation. Proximity labeling proteomics further identified isoform-specific interactors under nitrogen starvation, underscoring their functional divergence. These findings provide genetic evidence for the specialization of ATG8 isoforms in plants and lay a foundation for investigating their roles in diverse cell types and stress conditions.