Project description:Background: The mechanisms underlying ozone (O3)-induced pulmonary inflammation remain unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: The current study investigated the molecular mechanisms underlying IL-10-mediated attenuation of O3-induced pulmonary inflammation in mice. Methods: Il10-deficient (Il10-/-) and wild type (Il10+/+) mice were exposed to 0.3-ppm O3 or filtered air for 24, 48 or 72 hr. Immediately following exposure, differential cell counts, and total protein (a marker of lung permeability) were assessed from bronchoalveolar lavage fluid (BALF). mRNA and protein levels of cellular mediators were determined from lung homogenates. We also utilized global mRNA expression analyses of lung tissue with Ingenuity Pathway Analyses (IPA) to identify patterns of gene expression through which IL-10 modifies O3-induced inflammation. Results: Mean numbers of BALF polymorphonuclear leukocytes (PMNs) were significantly greater in Il10-/- mice than in Il10+/+ mice after exposure to O3 at all time points tested. O3-enhanced nuclear NF-kB translocation was elevated in the lungs of Il10-/- compared to Il10+/+ mice. Gene expression analyses revealed several key IL-10 and O3-dependent mediators, including IL-6, MIP-2, IL-1 and CD86. Conclusions: Results indicated that IL-10 protects against O3-induced pulmonary neutrophilic inflammation and cell proliferation. Moreover, gene expression analyses identified three response pathways and several novel genetic targets (e.g. Ccr1, Socs3, Il33, Hat1, and Gale) through which IL10 may modulate the innate and adaptive immune response. These novel mechanisms of protection against the pathogenesis of O3-induced pulmonary inflammation may also provide potential therapeutic targets to protect susceptible individuals. PARALLEL study design with 26 samples. Biological replicates: 2 to 3 replicates per group with wild type air exposed animals as controls for each time point (24, 48, 72 hours). Time-Course, Dose-Response, Strain comparison
Project description:Background: The mechanisms underlying ozone (O3)-induced pulmonary inflammation remain unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: The current study investigated the molecular mechanisms underlying IL-10-mediated attenuation of O3-induced pulmonary inflammation in mice. Methods: Il10-deficient (Il10-/-) and wild type (Il10+/+) mice were exposed to 0.3-ppm O3 or filtered air for 24, 48 or 72 hr. Immediately following exposure, differential cell counts, and total protein (a marker of lung permeability) were assessed from bronchoalveolar lavage fluid (BALF). mRNA and protein levels of cellular mediators were determined from lung homogenates. We also utilized global mRNA expression analyses of lung tissue with Ingenuity Pathway Analyses (IPA) to identify patterns of gene expression through which IL-10 modifies O3-induced inflammation. Results: Mean numbers of BALF polymorphonuclear leukocytes (PMNs) were significantly greater in Il10-/- mice than in Il10+/+ mice after exposure to O3 at all time points tested. O3-enhanced nuclear NF-kB translocation was elevated in the lungs of Il10-/- compared to Il10+/+ mice. Gene expression analyses revealed several key IL-10 and O3-dependent mediators, including IL-6, MIP-2, IL-1 and CD86. Conclusions: Results indicated that IL-10 protects against O3-induced pulmonary neutrophilic inflammation and cell proliferation. Moreover, gene expression analyses identified three response pathways and several novel genetic targets (e.g. Ccr1, Socs3, Il33, Hat1, and Gale) through which IL10 may modulate the innate and adaptive immune response. These novel mechanisms of protection against the pathogenesis of O3-induced pulmonary inflammation may also provide potential therapeutic targets to protect susceptible individuals.
Project description:Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24-72 h), pulmonary neutrophilic inflammation is augmented in adiponectin deficient mice. The purpose of this study was to use microarrays to examine the impact of adiponectin deficiency on changes in pulmonary gene expression induced by ozone, a common air pollutant.
Project description:Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24-72 h), pulmonary neutrophilic inflammation is augmented in adiponectin deficient mice. The purpose of this study was to use microarrays to examine the impact of adiponectin deficiency on changes in pulmonary gene expression induced by ozone, a common air pollutant. Lungs were harvested from wildtype and mice that were genetically deficient in adiponectin. Mice were exposed either to room air or to ozone (0.3 ppm) for 72 h. RNA was extracted and microarray analysis of gene expression performed. Both male and female mice were used.
Project description:Fish oil, olive oil, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they can protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet enriched with fish, olive, or coconut oil starting at 4 weeks of age for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4h/day for 2 consecutive days. The fish oil diet completely abolished phenylephrine-induced vasoconstriction that was increased following ozone exposure in the animals fed all other diets. Only the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors in the lung. Serum miRNA profile was assessed using small RNA-sequencing in normal and fish oil groups and demonstrated marked depletion of a variety of miRNAs, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that while fish oil offered protection from ozone-induced aortic vasoconstriction, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective dietary supplement.
Project description:Toll like receptor 4 (TLR4), an innate immunity gene, is involved in responses to several pulmonary agonists including endotoxin (LPS; Poltorak et al.,1998), ozone (O3 ,Kleeberger et. al., 2001), Pseudomonas aeruginosa (Faure et al, 2004), and hyperoxia (Zhang et al, 2005). TLR4 appears to partially mediate the response to LPS- and O3-induced lung injury, however, TLR4 is protective for prevention of injury in Pseudomonas aeruginosa infection and against acute lung injury (hyperoxia). The mechanism behind this protection is unclear. We previously demonstrated that TLR4 was also protective against BHT-induced chronic inflammation and tumor promotion (Bauer et al, 2005). C.C3H-Tlr4Lps-d (BALBLps-d) mice, congenic for a 10 cM region of C3H/HeJ chromosome 4 that contains Tlr4 (Vogel et al, 1994), have a missence mutation that renders TLR4 dysfunctional. The Tlr4 mutation likely abrogates signaling by disrupting a direct point of contact with other signaling molecules (Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4(7):499-511.). Bronchoalveolar lavage fluid (BALF) alveolar macrophages, lymphocytes, and total protein content were significantly elevated in BALBLps-d mice compared to BALB/c (BALB; Tlr4 sufficient) mice following chronic BHT (Bauer et al., 2005). BALBLps-d mice also had a significant increase in tumor multiplicity (60%) over that of BALB mice in response to an MCA/BHT tumor promotion protocol. While this was the first model to demonstrate a protective role for TLR4 in chronic lung inflammation and tumorigenesis, the downstream mechanism regulating this protective response remains unknown. Using Affymetrix microarray analysis followed by GeneSpring and Ingenuity pathway analyses, we herein identified known and novel downstream pathways and their interactions that may be involved in the protective mechanism elicited by TLR4. We therefore hypothesize that these pathways and interactions amongst the genes identified during the tumor promotion/chronic inflammation stage are in part influencing the differential strain response observed during tumorigenesis. Keywords: time course, tumor study Protocol 1 - 3 biological replicates after chronic dosing in each mouse strain Protocol 2 - multiple replicates after MCA/BHT tumor progression model used
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:This is an investigation of whole genome gene expression level in tissues of mice stimulated by LPS, FK565 or LPS + FK565 in vivo and ex vivo. We show that parenteral administration of a pure synthetic Nod1 ligand, FK565, induces site-specific vascular inflammation in mice, which is prominent in aortic root including aortic valves, slight in aorta and absent in other arteries. The degree of respective vascular inflammation is associated with persistent high expression of proinflammatory chemokine/cytokine genes in each tissue in vivo by microarray analysis, and not with Nod1 expression levels. The ex vivo production of proinflammatory chemokine/cytokine by Nod1 ligand is higher in aortic root than in other arteries from normal murine vascular tissues, and also higher in human coronary artery endothelial cells (HCAEC) than in human pulmonary artery endothelial cells (HPAEC), suggesting that site-specific vascular inflammation is at least in part ascribed to an intrinsic nature of the vascular tissue/cell itself. A fourty chip study using total RNA recovered from four isolated tissues of mice which were stimulated by various reagents. Aortic root, pulmonary artery, aorta and spleen of mice in 3 groups: 1) intraperitoneal injection of 20M-NM-<g of LPS priming only, 2) oral administration of FK565 (100M-NM-<g) for consecutive days, 3) oral administration of FK565 (100M-NM-<g) for consecutive days 1 day after LPS priming, at day 2, 4, and 7. And six chip study using total RNA recovered from three isolated vascular tissues of mice which were stimulated by FK565 (10M-NM-<g/mL) ex vivo.