Project description:Colisepticemia caused by avian pathogenic Escherichia coli (APEC) results in annual multimillion dollar losses to the poultry industry. Recent research suggests that APEC may have an important role in public health as well. Generally, colisepticemia follows a respiratory tract infection in which APEC penetrate the respiratory epithelium to enter the bloodstream. From the bloodstream, bacteria may spread to various internal organs resulting in perihepatitis, pericarditis, and other conditions. The aim of this study was to identify molecular mechanisms enabling APEC to survive and grow in the bloodstream. To do so, we compared the transcriptome of APEC O1 during growth in Luria-Bertani broth and chicken serum. Selected genes that were significantly up-regulated in chicken serum were then subjected to mutational analysis to confirm their role in APEC pathogenesis. Several categories of genes, predicted to contribute to adaptation and growth in the avian host, were identified. These included several known virulence genes and genes involved in adaptive metabolism, protein transport, biosynthesis pathways, stress resistance, and virulence regulation. Several genes with unknown function, which were localized to pathogenicity islands or APEC O1’s large virulence plasmid, were also identified, suggesting that they too contribute to survival in chicken serum. This genome-wide analysis provides novel insight into processes that are essential to APEC O1’s survival and growth in chicken serum. Two-condition experiment: LB vs. chicken serm; four biological replicates, independently grown and harvested.
Project description:Colisepticemia caused by avian pathogenic Escherichia coli (APEC) results in annual multimillion dollar losses to the poultry industry. Recent research suggests that APEC may have an important role in public health as well. Generally, colisepticemia follows a respiratory tract infection in which APEC penetrate the respiratory epithelium to enter the bloodstream. From the bloodstream, bacteria may spread to various internal organs resulting in perihepatitis, pericarditis, and other conditions. The aim of this study was to identify molecular mechanisms enabling APEC to survive and grow in the bloodstream. To do so, we compared the transcriptome of APEC O1 during growth in Luria-Bertani broth and chicken serum. Selected genes that were significantly up-regulated in chicken serum were then subjected to mutational analysis to confirm their role in APEC pathogenesis. Several categories of genes, predicted to contribute to adaptation and growth in the avian host, were identified. These included several known virulence genes and genes involved in adaptive metabolism, protein transport, biosynthesis pathways, stress resistance, and virulence regulation. Several genes with unknown function, which were localized to pathogenicity islands or APEC O1’s large virulence plasmid, were also identified, suggesting that they too contribute to survival in chicken serum. This genome-wide analysis provides novel insight into processes that are essential to APEC O1’s survival and growth in chicken serum.
Project description:These experiments were performed to show serogroup conversion in Vibrio cholerae from O1 to O139 in a mixed communities / biofilms. For this purpose, V. cholerae O1 El Tor A1552 and VCO139-Kan strain (a MO10 derivative; O139 serogroup) were grown on crab shell fragments to induce natural competence for transformation. Transformants were selected on LB+Kan+Rif plates. O139 positive transformants have undergone a full exchange of the O1 region by the O139 region. This implies an exchange of an at least 32 kb spanning O1 genomic region by more than 42 kb of the O139 region. The transformation experiment was done at least five independent times; data from four experiments are shown; per experiment one to three clones were analysed by CGH with two experimental replicates each. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: all_pairs, array CGH
Project description:Avian pathogenic Escherichia coli (APEC) is considered one of the most common infectious bacterial diseases resulting in significant economic losses in poultry industry worldwide. In order to investigate the association between host immune resistance and miRNA expression in the pathogenic process induced by APEC, miRNA expression profiles in broilers spleen were performed by Solexa deep sequencing from three different treatment groups including non-challenged (NC), challenged-mild pathology (MD), and challenged-severe pathology (SV).In total, 3 462 706, 3 586 689, and 3 591 027 clean reads were obtained for NC, MD, and SV, respectively. After comparing the miRNA expression patterns, 27 differentially expressed miRNAs were identified among the three response groups, which included 13 miRNAs between NC and MD, 17 between NC and SV, and 14 between MD and SV. For these miRNAs, different expression in MD and SV suggested they may have resistance activity in APEC infection. Through integrated analysis of miRNA and mRNA expression patterns, 43 negative pairs between miRNA and mRNA (r < -0.80) were obtained. 4 miRNAs were validated to be significant negatively correlated to targets by quantitative real time PCR: gga-miR-21 (CLEC3B and GGTLA1), gga-miR-429 (TMEFF2, CDC20, SHISA2 and NOX4), gga-miR-146b (LAT2 and WNK1), and gga-miR-215 (C7 and ASL2). Additionally, the expression of gga-miR-21 and gga-miR-146b was significantly up-regulated by LPS induced in HD11 macrophage cell. In contrast, gga-miR-429 has no significant change. In summary, we present the first report that characterized the miRNA profiles of chicken spleen in response to APEC infection, and identified several candidate miRNAs which might accelerate host immune response through down-regulating their specific target genes. Through the intra-air sac route into the left thoracic air sac, 240 non-vaccinated males at 4 weeks of age were challenged with 0.1 ml APEC O1 (10^8 colony forming units) and another 120 non-vaccinated males were non-challenged but treated with 0.1 ml PBS. Detailed information on the APEC O1 strain and challenge process was described by previously described study. Necropsy was performed at 1 day post challenge, and a summarized lesion ranging from 0 to 7 was determined for each APEC-challenged bird. Birds with lesions scoring 0-2 were regarded as mild infection, and those scoring 4-7 were designated as severe infection. The mild and severe pathology meant that birds were resistant and susceptible to APEC infection, respectively. Then, spleens from three groups, consisting of non-challenged, challenged-mild pathology and challenged-severe pathology were subjected to Solexa deep sequencing to investigate the dynamics of chicken miRNA expression.
Project description:DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken
Project description:These experiments were performed to show a serogroup conversion in Vibrio cholerae from O1 to O139. For this purpose, V. cholerae O1 WT = A1552 was grown on crab shell fragments to induce natural competence for transformation. Purified DNA (2 ug each) from strain VC73-orf6/7-Kan-A was added after 24h and the cells grown further for 24h. The VC73-orf6/7-Kan-A strain is a ATCC25873 derivative (both O37 serogroup) which harbors a Kanamycin cassette in the O37 region (as part of the operon between orf6 and orf7 w/o own promotor) for better selection. Transformants were selected on LB+Kan plates. Three clones were selected from each experiment and analyzed by microarray hybridization (BioPrime. Array CGH Genomic Labeling from Invitrogen). Two microarray replicates were done per clone. Comparison of A1552 versus VC73-orf6/7-Kan-A is shown as control. A genotyping experiment design type classifies an individual or group of individuals on the basis of alleles, haplotypes, SNP's. Keywords: genotyping_design