Project description:We present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype. In order to compare the population of chalcone synthase related small RNAs, we sequenced 3 to 6 million small RNAs using the Illumina Genome Analyzer from the following four soybean cultivars and tissues with specific genotypes at the I locus: Richland immature seed coats (homozygous for the dominant I allele that specifies yellow seed coat); Williams immature seed coats (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum) Williams (i-i/i-i yellow) immature cotyledons (homozygous for the dominant i-i allele that specifies yellow seed coat with pigmented hilum); Williams 55 immature seed coats (a Williams isogenic line homozygous for the recessive i allele that specifics pigmented seed coats. All seed coats and cotyledons were dissected from green stage immature seeds within the fresh weight range of 50-75 mg.
Project description:The seed coat of black (iRT) soybean with the dominant R allele begins to accumulate cyanic pigments at the transition stage of seed development (300 – 400 mg fresh seed weight), whereas the brown (irT) nearly-isogenic seed coat with the recessive r allele lacks cyanic pigments at all stages of seed development. We used microarrays to determine global gene expression differences between black (iRT) and brown (irT) soybean seed coats at the transition stage of seed development (300 – 400 mg fresh seed weight). To identify the complete set of gene transcripts that are differentially expressed between the seed coats of black (iRT) and brown (irT) Clark isolines, seed coats were dissected at the transition stage of seed development (300 – 400 mg fresh seed weight) for microarray analysis using the Affymetrix Soybean GeneChip. To ensure seed coats were of the same stage of development, the days post anthesis, pod length, pod color, embryo morphology, and transcript levels of the developmental marker gene Gm-r1083-1191, a putative cutin biosynthesis gene, and DFR1 were ensured to be equivalent between black (iRT) and brown (irT) isolines.
Project description:We present results from deep sequencing of small RNA populations from several genotypes of soybean and demonstrate that the CHS siRNAs accumulated only in the seed coats of the yellow varieties having either the dominant I or i-i alleles and not in the pigmented seed coats with homozygous recessive i genotypes. However, the diagnostic CHS siRNAs did not accumulate in the cotyledons of genotypes with the dominant I or i-i alleles thus demonstrating the novelty of an endogenous inverted repeat region of CHS genes driving RNA silencing in trans of non-linked CHS family members in a tissue-specific manner. The phenomenon results in inhibition of a metabolic pathway by siRNAs in one tissue allowing expression of the flavonoid pathway and synthesis of secondary metabolites in other organs as the chalcone synthase small RNAs are found in the seed coats of yellow seeded soybean varieties but not in the cotyledons of the same genotype.
Project description:The seed coat of black (iRT) soybean with the dominant R allele begins to accumulate cyanic pigments at the transition stage of seed development (300 – 400 mg fresh seed weight), whereas the brown (irT) nearly-isogenic seed coat with the recessive r allele lacks cyanic pigments at all stages of seed development. We used microarrays to determine global gene expression differences between black (iRT) and brown (irT) soybean seed coats at the transition stage of seed development (300 – 400 mg fresh seed weight).
Project description:The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation and the recessive k1 mutation can epistatically overcome the dominant I and i-i alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the i-i and i-k alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-Seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous i-k K1 versus homozygous i-i k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Non-functional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or i-i alleles.
Project description:The soybean (Glycine max) seed coat has distinctive, genetically programmed patterns of pigmentation and the recessive k1 mutation can epistatically overcome the dominant I and i-i alleles, which inhibit seed color by producing small interfering RNAs (siRNAs) targeting chalcone synthase (CHS) mRNAs. Small RNA sequencing of dissected regions of immature seed coats demonstrated that CHS siRNA levels cause the patterns produced by the i-i and i-k alleles of the I locus, which restrict pigment to the hilum or saddle region of the seed coat, respectively. To identify the K1 locus, we compared RNA-Seq data from dissected regions of two Clark isolines having similar saddle phenotypes mediated by CHS siRNAs but different genotypes (homozygous i-k K1 versus homozygous i-i k1). By examining differentially expressed genes, mapping information, and genome resequencing, we identified a 129-bp deletion in Glyma.11G190900 encoding Argonaute5 (AGO5), a member of the Argonaute family. Amplicon sequencing of several independent saddle pattern mutants from different genetic backgrounds revealed independent lesions affecting AGO5, thus establishing Glyma.11G190900 as the K1 locus. Non-functional AGO5 from k1 alleles leads to altered distributions of CHS siRNAs, thus explaining how the k1 mutation reverses the phenotype of the seed coat regions from yellow to pigmented, even in the presence of the normally dominant I or i-i alleles.
Project description:We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-rm is homozygous for a mutable allele (rm) that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-rm line had a 13 kb CACTA subfamily transposon insertion (designated TgmR*) at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3) to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-rm progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock’s Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.
Project description:We determined the molecular basis of three soybean lines that vary in seed coat color at the R locus which is thought to encode a MYB transcription factor. RM55-rm is homozygous for a mutable allele (rm) that specifies black and brown striped seeds; RM30-R* is a stable black revertant isoline derived from the mutable line; and RM38-r has brown seed coats due to a recessive r allele shown to translate a truncated MYB protein. Using long range PCR, 454 sequencing of amplicons, and whole genome re-sequencing, we determined that the variegated RM55-rm line had a 13 kb CACTA subfamily transposon insertion (designated TgmR*) at a position 110 bp from the beginning of Intron2 of the R locus, Glyma09g36983. Although the MYB encoded by R was expressed at only very low levels in older seed coats of the black revertant RM30-R* line, it upregulated expression of anthocyanidin synthase genes (ANS2, ANS3) to promote the synthesis of anthocyanins. Surprisingly, the RM30-R* revertant also carried the 13 kb TgmR* insertion in Intron2. Using RNA-Seq, we showed that intron splicing was accurate, albeit at lower levels, despite the presence of the 13kb TgmR* element. As determined by whole genome methylation sequencing, we demonstrate that the TgmR* sequence was relatively more methylated in RM30-R* than in the mutable RM55-rm progenitor line. The stabilized and more methylated RM30-R* revertant line apparently lacks effective binding of a transposae to its subterminal repeats, thus allowing intron splicing to proceed resulting in sufficient MYB protein to stimulate anthocyanin production and thus black seed coats. In this regard, the TgmR* element in soybean resembles McClintock’s Spm-suppressible and change-of-state alleles of maize. This comparison explains the opposite effects of the TgmR* element on intron splicing of the MYB gene in which it resides depending on the methylation state of the element.
Project description:The I locus is a 27-kb inverted repeat cluster of chalcone synthase genes CHS1-3-4 that mediates siRNA down-regulation of CHS7 and CHS8 target mRNAs during seed development leading to yellow seed coats lacking anthocyanin pigments. Here, we report small RNA sequencing of ten stages of seed development from a few days post fertilization through maturity, revealing the amplification from primary to secondary short interfering RNAs (siRNAs) occurring during development. The young seed populations had a higher proportion of siRNAs representing the CHS1-3-4 gene family members, consistent with this region as the origin of the primary siRNAs. More intriguingly, the very young seed had a higher proportion of 22-nt CHS siRNAs than did the mid-maturation seed. We infer that the primary CHS siRNAs increase during development to levels sufficient to trigger amplification of secondary CHS siRNAs from the CHS7/8 target mRNAs, enabling the total levels of 21-nt CHS siRNAs to rise dramatically. Further, we demonstrate that the soybean system exhibits tissue-specific CHS siRNA production because primary CHS siRNA levels are not sufficient to trigger secondary amplification in tissues other than the seed coat.
Project description:The I locus is a 27-kb inverted repeat cluster of chalcone synthase genes CHS1-3-4 that mediates siRNA down-regulation of CHS7 and CHS8 target mRNAs during seed development leading to yellow seed coats lacking anthocyanin pigments. Here, we report small RNA sequencing of ten stages of seed development from a few days post fertilization through maturity, revealing the amplification from primary to secondary short interfering RNAs (siRNAs) occurring during development. The young seed populations had a higher proportion of siRNAs representing the CHS1-3-4 gene family members, consistent with this region as the origin of the primary siRNAs. More intriguingly, the very young seed had a higher proportion of 22-nt CHS siRNAs than did the mid-maturation seed. We infer that the primary CHS siRNAs increase during development to levels sufficient to trigger amplification of secondary CHS siRNAs from the CHS7/8 target mRNAs, enabling the total levels of 21-nt CHS siRNAs to rise dramatically. Further, we demonstrate that the soybean system exhibits tissue-specific CHS siRNA production because primary CHS siRNA levels are not sufficient to trigger secondary amplification in tissues other than the seed coat. High-throughput sequencing using Genome Analyzer II and Illumina HiSeq 2000 was performed with two biological replicates (Some stages don't have replicate).