Project description:Autonomic nervous system is widely distributed in liver, and some reserchers have found that disruppted autonomic nerves will delay liver regeneration. We used microarrays to further highlight the regulatory role of autonomic nervous system in liver regeneration at gene transcription level. Surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, and the expression profiles of regenerating liver at 2h were detected using Rat Genome 230 2.0 array. Then the significantly changed genes related to liver regeneration (LR)-, injury-, splanchnic nerve-LR-, vagal nerve-LR-, and autonomic nerve-LR-related genes were identified, respectively. The relevance of gene expression profiles and biological processes was analyzed by bioinformatics and systems biology.
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.
Project description:Background: 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF) is one of the major odor compounds generated by the Maillard reaction. We previously reported that the inhalation of DMHF decreased systolic blood pressure via the autonomic nervous system in rats. The autonomic nervous system is also closely related to appetite regulation. The present study investigated the effects of DMHF on dietary intake and gene expression. Results: The inhalation of DMHF increased the dietary intake of rats during the feeding period. However, body weight gain was suppressed after six weeks of feeding. A DNA microarray analysis showed that DMHF altered gene expression associated with feeding behavior and neurotransmission in the rat brain. Conclusion: DMHF inhalation promotes appetite and changes gene expression in rats. Furthermore, phenotypic changes may regulate neurotransmission and appetite at the mRNA level in addition to controlling the autonomic nervous system.
Project description:Autonomic nervous system is widely distributed in liver, and some reserchers have found that disruppted autonomic nerves will delay liver regeneration. We used microarrays to further highlight the regulatory role of autonomic nervous system in liver regeneration at gene transcription level.