Project description:NANOG has emerged as a central gatekeeper of pluripotency. Here we show that as human embryonic stem (ES) cells exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs can induce differentiation of human ES cells into extraembryonic lineages. Here we report that FGF2 switches BMP4 induced differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. Blocking the MEK-ERK pathway either by chemical inhibitors or by an ERK-specific phosphatase (DUSP6) blocks the FGF2-mediated lineage switch. Active MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation. Forced NANOG expression results in FGF independent BMP4 induction of mesendoderm, and knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4 induced differentiation of human ES cells by maintaining NANOG levels through the MEK-ERK pathway. There are three sets of expression data. Set 1 (14 samples) is 5day human ES cells (H1) differentiated with different concentrations of BMP4, in the presence or absence of FGF2. Set 2 (14 samples) is 50ng/mL of BMP4 induced H1 cells differentiation time course, with or without FGF2. Set 3 (22 samples) is 5ng/mL of BMP4 induced H1 cells differentiation time course, with or without FGF2.
Project description:NANOG has emerged as a central gatekeeper of pluripotency. Here we show that as human embryonic stem (ES) cells exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs can induce differentiation of human ES cells into extraembryonic lineages. Here we report that FGF2 switches BMP4 induced differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. Blocking the MEK-ERK pathway either by chemical inhibitors or by an ERK-specific phosphatase (DUSP6) blocks the FGF2-mediated lineage switch. Active MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation. Forced NANOG expression results in FGF independent BMP4 induction of mesendoderm, and knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4 induced differentiation of human ES cells by maintaining NANOG levels through the MEK-ERK pathway.
Project description:Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during BMP4-driven differentiation. We show that BMP activation, coupled with inhibition of both ACTIVIN/NODAL and FGF signaling, induces differentiation of hESCs, specifically to M-NM-2hCG hormone-secreting multinucleated syncytiotrophoblast and does not support induction of embryonic and extraembryonic lineages, extravillous trophoblast, and primitive endoderm. It has been previously reported that FGF2 can switch BMP4-induced hESC differentiation outcome to mesendoderm. Here, we show that FGF inhibition alone, or in combination with either ACTIVIN/NODAL inhibition or BMP activation, supports hESC differentiation to hCG-secreting syncytiotrophoblast. We show that the inhibition of the FGF pathway acts as a key in directing BMP4-mediated hESC differentiation to syncytiotrophoblast. Human embryonic Stem Cells (hESCs) were treated under defined conditions (N2B27) with BMP4 (B), SB431542 (SB) (ACTIVIN/NODAL inhibitor), SU5402 (SU) (FGFR1 inhibitor), FGF2 (F) either alone or in various combinations as mentioned, followed by isolation of total RNA.
Project description:In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4. In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4.
Project description:In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4. In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. The purpose of the gene expression analysis of FGF2 and BMP4 treated co-cultures versus the untreated ones was to profile the transcriptomes of FGF2 and BMP4-driven endothelial differentiation in order to detect molecules and pathways involved upon each of the two exogenous signals. In parallel we also performed transcriptome analysis of single monocultures of stromal PA6 cells to investigate the signals released by the stroma in response to FGF2 and BMP4. We found that TGFb1 is involved in the differentiation of ES cells into endothelium in response to FGF2 while Wnt6 and Wnt pathway sustain the endothelial differentiation of ES cells in response to BMP4.
Project description:Bone morphogenetic protein (BMP) signaling is known to support differentiation of human embryonic stem cells (hESCs) into mesoderm and extraembryonic lineages, whereas other signaling pathways can largely influence this lineage specification. Here, we set out to reinvestigate the influence of ACTIVIN/NODAL and fibroblast growth factor (FGF) pathways on the lineage choices made by hESCs during BMP4-driven differentiation. We show that BMP activation, coupled with inhibition of both ACTIVIN/NODAL and FGF signaling, induces differentiation of hESCs, specifically to βhCG hormone-secreting multinucleated syncytiotrophoblast and does not support induction of embryonic and extraembryonic lineages, extravillous trophoblast, and primitive endoderm. It has been previously reported that FGF2 can switch BMP4-induced hESC differentiation outcome to mesendoderm. Here, we show that FGF inhibition alone, or in combination with either ACTIVIN/NODAL inhibition or BMP activation, supports hESC differentiation to hCG-secreting syncytiotrophoblast. We show that the inhibition of the FGF pathway acts as a key in directing BMP4-mediated hESC differentiation to syncytiotrophoblast.
Project description:In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. A pivotal role in ES cells differentiation is played by the stromal PA6 cells.To analyze the early signals released by PA6 cells in the medium of the co-cultures in response to FGF2 and BMP4, monolayers of PA6 cells were treated with recombinant FGF2 or BMP4 for 3 hours and the gene expression analysis of treated PA6 cultures versus the untreated ones was performed. In this work we investigated the molecular mechanisms that sustain the endothelial differentiation of murine embryonic stem cells (ES). When ES cells are co-cultured with the stromal PA6 cells in serum-free medium they differentiate mainly into neurons, thanks to the neural inducing activity exerted by the stroma. The addition of exogenous FGF2 allows also the differentiation of endothelial cells whereas, in presence of exogenous BMP4, ES cells differentiate exclusively into endothelium. A pivotal role in ES cells differentiation is played by the stromal PA6 cells.To analyze the early signals released by PA6 cells in the medium of the co-cultures in response to FGF2 and BMP4, monolayers of PA6 cells were treated with recombinant FGF2 or BMP4 for 3 hours and the gene expression analysis of treated PA6 cultures versus the untreated ones was performed.
Project description:The transcription factors Nanog, Oct4 and Sox2 are the master regulators of pluripotency in mouse embryonic stem cells (mESCs), however, their functions in human ESCs (hESCs) have not been rigorously defined. Here we show that the requirements for NANOG, OCT4 and SOX2 in hESCs differ from those in mESCs. Both NANOG and OCT4 are required for self-renewal and repress differentiation. OCT4 controls both extraembryonic and epiblast-derived cell fates in a BMP4-dependent manner. OCT4-depleted hESCs commit to trophectoderm and primitive endoderm in the presence of BMP4, but undergo neuroectoderm differentiation in the absence of BMP4. NANOG represses neuroectoderm and neural crest commitment, but has little or no effect on the other lineages. We find that SOX2 is not required for self-renewal because it is redundant with SOX3, which is induced in SOX2-depleted hESCs. Simultaneous depletion of both SOX2 and SOX3 induces differentiation into the primitive streak. Unexpectedly, we identify significant variability in the usage of pluripotency factors by individual hESC lines, suggesting that the pluripotency network is remodelled to support a continuum of developmental states. Our study revises the general view of how NANOG, OCT4 and SOX2 orchestrate self-renewal in hESCs. Total RNA obtained from hESCs with or without BMP4 treatment for 8 days time course.
Project description:The transcription factors Nanog, Oct4 and Sox2 are the master regulators of pluripotency in mouse embryonic stem cells (mESCs), however, their functions in human ESCs (hESCs) have not been rigorously defined. Here we show that the requirements for NANOG, OCT4 and SOX2 in hESCs differ from those in mESCs. Both NANOG and OCT4 are required for self-renewal and repress differentiation. OCT4 controls both extraembryonic and epiblast-derived cell fates in a BMP4-dependent manner. OCT4-depleted hESCs commit to trophectoderm and primitive endoderm in the presence of BMP4, but undergo neuroectoderm differentiation in the absence of BMP4. NANOG represses neuroectoderm and neural crest commitment, but has little or no effect on the other lineages. We find that SOX2 is not required for self-renewal because it is redundant with SOX3, which is induced in SOX2-depleted hESCs. Simultaneous depletion of both SOX2 and SOX3 induces differentiation into the primitive streak. Unexpectedly, we identify significant variability in the usage of pluripotency factors by individual hESC lines, suggesting that the pluripotency network is remodelled to support a continuum of developmental states. Our study revises the general view of how NANOG, OCT4 and SOX2 orchestrate self-renewal in hESCs. Total RNA obtained from EF1a-control-, OE-NANOG-, OE-OCT4- or OE-SOX2-transduced hESCs.
Project description:The transcription factors Nanog, Oct4 and Sox2 are the master regulators of pluripotency in mouse embryonic stem cells (mESCs), however, their functions in human ESCs (hESCs) have not been rigorously defined. Here we show that the requirements for NANOG, OCT4 and SOX2 in hESCs differ from those in mESCs. Both NANOG and OCT4 are required for self-renewal and repress differentiation. OCT4 controls both extraembryonic and epiblast-derived cell fates in a BMP4-dependent manner. OCT4-depleted hESCs commit to trophectoderm and primitive endoderm in the presence of BMP4, but undergo neuroectoderm differentiation in the absence of BMP4. NANOG represses neuroectoderm and neural crest commitment, but has little or no effect on the other lineages. We find that SOX2 is not required for self-renewal because it is redundant with SOX3, which is induced in SOX2-depleted hESCs. Simultaneous depletion of both SOX2 and SOX3 induces differentiation into the primitive streak. Unexpectedly, we identify significant variability in the usage of pluripotency factors by individual hESC lines, suggesting that the pluripotency network is remodelled to support a continuum of developmental states. Our study revises the general view of how NANOG, OCT4 and SOX2 orchestrate self-renewal in hESCs. Total RNA obtained from SOX2-KD stable hESC clones and H1P control stable hESC clones.