Project description:The polymorphic yeast Candida albicans exists in blastospore and filamentous forms. The switch from one morphological state to the other coincides with the expression of virulence factors, which makes the yeast-to-hypha transition an attractive target for the development of new antifungal agents. Because an untapped therapeutic potential resides in small molecules that hinder C. albicans filamentation, we characterized the inhibitory effect of conjugated linoleic acid (CLA) on hyphal growth and addressed its mechanism of action. CLA inhibited hyphal growth in a dose-dependent fashion, in both liquid- and solid-inducing media. The fatty acid blocked germ tube formation and impeded hyphal elongation. Global transcriptional profiling revealed that CLA downregulated the expression of hypha-specific genes and abrogated the induction of several morphogenesis regulators, including RAS1, TEC1 and UME6. CLA’s repressive effect on TEC1 expression was Ras1-dependent, but Efg1-independent. CLA treatment resulted in the delocalization of Ras1 and its degradation, resulting in the downregulation of the Ras1-cAMP-PKA signaling pathway. This study provides the biological and molecular explanations that underlie CLA’s ability to inhibit hyphal growth in C. albicans.
Project description:The polymorphic yeast Candida albicans exists in blastospore and filamentous forms. The switch from one morphological state to the other coincides with the expression of virulence factors, which makes the yeast-to-hypha transition an attractive target for the development of new antifungal agents. Because an untapped therapeutic potential resides in small molecules that hinder C. albicans filamentation, we characterized the inhibitory effect of conjugated linoleic acid (CLA) on hyphal growth and addressed its mechanism of action. CLA inhibited hyphal growth in a dose-dependent fashion, in both liquid- and solid-inducing media. The fatty acid blocked germ tube formation and impeded hyphal elongation. Global transcriptional profiling revealed that CLA downregulated the expression of hypha-specific genes and abrogated the induction of several morphogenesis regulators, including RAS1, TEC1 and UME6. CLAM-bM-^@M-^Ys repressive effect on TEC1 expression was Ras1-dependent, but Efg1-independent. CLA treatment resulted in the delocalization of Ras1 and its degradation, resulting in the downregulation of the Ras1-cAMP-PKA signaling pathway. This study provides the biological and molecular explanations that underlie CLAM-bM-^@M-^Ys ability to inhibit hyphal growth in C. albicans. Two-color experimental design that consistently used growth in Spider Media at 30M-bM-^DM-^C as the control. We tested the effect of high temperature as well as the effect of adding 100 mM-BM-5 CLA at either low or high temperature. RNA from each replicate came from independent cultures.
Project description:We perform microarray analysis of HUVECs upon stimulation with virulent wildtype C. albicans strain SC5314 or its efg1/efg1 cph1/cph1 hyphal-deficient derivative strain CAN34 to compare the gene expression profiles elicited from HUVECs in response to these strains. In addition, these responses are compared to that of TNF-alpha induced responses to determine which responses are Candida-specific. Keywords: comparison of host response to different Candida albicans morphologies
Project description:Our genetic screen reveals that deletion of CTM1, which abolishes the lysine trimethylation of cytochrome c (Cyc1), results in inhibition of hyphal morphogenesis in Candida albicans. Similar results are observed in the unmethylatable Cyc1 mutant (cyc1K79A). To elucidate how unmethylated Cyc1 inhibits hyphal growth, we performed RNA-Seq analysis by comparing WT (BWP17), ctm1∆/∆, and cyc1K79A cells grown in yeast and hyphal condition. Consistent with previous published data, many hyphal specific genes (HSGs), such as ALS3, ECE1, HWP1, and UME6, are upregulated while three major hyphal suppressor genes, TUP1, NRG1, and RFG1, are downregulated when WT cells switch from yeast to hyphal growth. Similar changes are observed in ctm1Δ/Δ and cyc1K79A cells upon hyphal induction, even though most mutant cells maintain yeast morphology throughout the induction. Further comparisons reveal that the basal transcriptional levels of HSGs are much lower in ctm1Δ/Δ and cyc1K79A cells than those in WT cells. Upon hyphal induction, the levels of HSGs in ctm1Δ/Δ and cyc1K79A cells increase but still remain lower than their basal levels in WT cells. In contrast, the hyphal suppressor genes (especially NRG1) exhibit much higher basal transcriptional levels in ctm1Δ/Δ and cyc1K79A cells than in WT cells. Their transcriptional levels reduce upon hyphal induction but still remain higher than the basal levels in WT cells. Together, these data suggest that unmethylated Cyc1 inhibits hyphal morphogenesis via transcriptional regulation of HSGs and hyphal suppressor genes.
Project description:Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship between global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated hyphae and are generally expressed at lower levels; interestingly, no genes appeared to be expressed exclusively in pseudohyphae. Our results also strongly suggest that in addition to dosage, extended duration of filament-specific gene expression is sufficient to drive the C. albicans yeast-pseudohyphal-hyphal transition. Finally, we describe the first transcriptional profile of the C. albicans reverse hyphal-pseudohyphal-yeast transition and demonstrate that this transition not only involves down-regulation of known hyphal-specific genes but also differential expression of additional genes which have not previously been associated with the forward transition, including many involved in protein synthesis. These findings provide new insight into genome-wide mechanisms important for determining fungal morphology and suggest that in addition to similarities, there are also fundamental differences in global gene expression as pathogenic filamentous fungi undergo forward and reverse morphological transitions.
Project description:Candida yeasts causing human infections are spread across the yeast phylum with Candida glabrata being related to Saccharomyces cerevisiae, Candida krusei grouping to Pichia spp., and Candida albicans, Candida parapsilosis and Candida tropicalis belonging to the CTG-clade. The latter lineage contains yeasts with an altered genetic code translating CUG codons as serine using a serine-tRNA with a mutated anticodon. It has been suggested that the CTG-clade CUG codons are mistranslated to a small extent as leucine due to mischarging of the serine-tRNA(CAG). The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity. Here, we re-assessed this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms.
Project description:Candida albicans is an important fungal pathogen in humans. Several virulence factors of C. albicans have been reported, including a morphological transition from yeast to filamentous forms (hyphae and pseudohyphae). Mss11 is a transcriptional activator required for hyphal formation. To reveal the potential target genes of Mss11, DNA microarray analysis was performed to compare wild type and mss11-deleted mutant.
Project description:CaGAL102 is a sequence homolog of Rmlb. In Candida knock out of this gene causes abnormal hyphal morphogenesis and increased sensitivity to cell wall damaging agents. The knock out strain is also avirulent in mouse model of systemic infection. To get a larger insight into the function of the protein product of this gene we carried out global transcription analysis through micro array experiment. The gene is expressed under normal growth conditions and the knock out causes the cells to become hyphal under these conditions. Many of the cell wall proteins were upregulated recapitulating the cell morphology. Keywords: Candida albicans, Gene knockout, genome wide transcription profiling study