Project description:The new official nomenclature subdivides human monocytes into three subsets, classical (CD14++CD16-), intermediate (CD14++CD16+) and nonclassical (CD14+CD16+). Here, we comprehensively define relationships and unique characteristics of the three human monocyte subsets using microarray and flow cytometry analysis. Our analysis revealed that the intermediate and nonclassical monocyte subsets were most closely related. For the intermediate subset, majority of genes and surface markers were expressed at an intermediary level between the classical and nonclassical subset. There features therefore indicate a close and direct lineage relationship between the intermediate and nonclassical subset. From gene expression profiles, we define unique characteristics for each monocyte subset. Classical monocytes were functionally versatile, due to the expression of a wide range of sensing receptors and several members of the AP-1 transcription factor family. The intermediate subset was distinguished by high expression of MHC class II associated genes. The nonclassical subset were most highly differentiated and defined by genes involved in cytoskeleton rearrangement that explains their highly motile patrolling behavior in vivo. Additionally, we identify unique surface markers, CLEC4D, IL-13RA1 for classical, GFRA2, CLEC10A for intermediate and GPR44 for nonclassical. Our study hence defines the fundamental features of monocyte subsets necessary for future research on monocyte heterogeneity. Three human monocyte subsets, the CD14++CD16- classical, the CD14++CD16+ intermediate and CD14+CD16+ nonclassical subsets were purified using fluorescence activated cell sorting from peripheral blood mononuclear cells. RNA was processed from the three monocyte subsets from 4 individual donors in duplicates, giving a total of 24 samples.
Project description:The new official nomenclature subdivides human monocytes into three subsets, classical (CD14++CD16-), intermediate (CD14++CD16+) and nonclassical (CD14+CD16+). Here, we comprehensively define relationships and unique characteristics of the three human monocyte subsets using microarray and flow cytometry analysis. Our analysis revealed that the intermediate and nonclassical monocyte subsets were most closely related. For the intermediate subset, majority of genes and surface markers were expressed at an intermediary level between the classical and nonclassical subset. There features therefore indicate a close and direct lineage relationship between the intermediate and nonclassical subset. From gene expression profiles, we define unique characteristics for each monocyte subset. Classical monocytes were functionally versatile, due to the expression of a wide range of sensing receptors and several members of the AP-1 transcription factor family. The intermediate subset was distinguished by high expression of MHC class II associated genes. The nonclassical subset were most highly differentiated and defined by genes involved in cytoskeleton rearrangement that explains their highly motile patrolling behavior in vivo. Additionally, we identify unique surface markers, CLEC4D, IL-13RA1 for classical, GFRA2, CLEC10A for intermediate and GPR44 for nonclassical. Our study hence defines the fundamental features of monocyte subsets necessary for future research on monocyte heterogeneity.
Project description:The progression to AIDS is influenced by changes in the biology of heterogeneous monocyte subsets. Classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes may represent progressive stages of monocyte maturation or disparate myeloid lineages with different turnover rates and function. To investigate the relationship between monocyte subsets and the response to SIV infection, we performed microarray analysis of monocyte subsets in rhesus macaques at three timepoints: prior to SIV infection, 26 days post-infection, and necropsy with AIDS. Genes with a 2-fold change between monocyte subsets (2023 genes) or infection timepoints (424 genes) were selected. We identify 172 genes differentially expressed among monocyte subsets in both uninfected and SIV-infected animals. Classical monocytes express genes associated with inflammatory responses and cell proliferation. Nonclassical monocytes express genes associated with activation, immune effector functions, and cell cycle inhibition. The classical and intermediate subsets are most similar at all timepoints, and transcriptional similarity between intermediate and nonclassical monocytes increases with AIDS. Cytosolic sensors of nucleic acids, restriction factors, and interferon-stimulated genes are induced in all three subsets with AIDS. We conclude that SIV infection alters the transcriptional relationship between monocyte subsets and that the innate immune response to SIV infection is conserved across monocyte subsets.
Project description:Human peripheral monocytes have been categorized into three subsets based on differential expression levels of CD14 and CD16. However, the factors that influence the distribution of monocyte subsets and the roles which each subset plays in autoimmunity are not well studied. To compare the gene expression profiling 1) on intermediate monocytes CD14++CD16+ monocytes between healthy donors and autoimmune uveitis patients and 2) among 3 monocyte subsets in health donors, here we purified circulating intermediate CD14++CD16+ monocytes from 5 patients with autoimmune uveitis (labeled as P1-5) and 4 healthy donors (labeled as HD1-4) by flow cytometry and isolated total RNA to proceed microarray assay. In addition, we also purified CD14+CD16++ (non-classical monocytes) and CD14++CD16- (classical monocytes) from 4 healthy donors to do microarray. We demonstrate that CD14++CD16+ monocytes from patients and healthy control donors share a similar gene expression profile. The CD14+CD16++ cells (non-classical monocytes) display the most distinctive gene expression profiling when compared to intermediate CD14++CD16+ monocytes and classical CD14++CD16- monocytes.
Project description:Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity. Human monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) were isolated from 12 healthy volunteers based on MACS technology. Total RNA from monocyte subsets was isolated and same aliquots from each donor and monocyte subset were matched for SuperSAGE. Three SuperSAGE libraries (CD14++CD16-, CD14++CD16+ and CD14+CD16++) were generated.
Project description:We report mRNA expression profiles of blood monocyte subsets in COVID patients with comparison to non-COVD samples. COVID patients were grouped into mild without hospitalization and ICU without ventilation. Monocytes were FACS sorted based on CD14 and CD16 expression, generating classical CD14+CD16- monocytes and CD16+CD14+/++ nonclassical monocytes. The mRNA expression comparison demonstrates a strong response to viral infection and suggests a defect in nonclassical monocytes maturation. It also provides several biomarkers for prognosis purposes, including CD55 and CD81.
Project description:Monocytes are a heterogeneous cell population with subset-specific functions and phenotypes. The differential expression of CD14 and CD16 distinguishes classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes. However, CD14++CD16+ monocytes remain the most poorly characterized subset so far. Therefore we analyzed the transcriptomes of the three monocyte subsets using SuperSAGE in combination with high-throughput sequencing. Analysis of 5,487,603 tags revealed unique identifiers of CD14++CD16+ monocytes, delineating these cells from the two other monocyte subsets. CD14++CD16+ monocytes were linked to antigen processing and presentation (e.g. CD74, HLA-DR, IFI30, CTSB), to inflammation and monocyte activation (e.g. TGFB1, AIF1, PTPN6), and to angiogenesis (e.g. TIE2, CD105). Therefore we provide genetic evidence for a distinct role of CD14++CD16+ monocytes in human immunity.
Project description:Human monocytes are a heterogeneous cell population consisting of three subsets: classical CD14++CD16-, intermediate CD14++CD16+ and nonclassical CD14+CD16++ monocytes. Intermediate monocytes contribute to inflammation, and their circulating cell counts are increased in many chronic inflammatory diseases, even though the underlying pathways are poorly characterized. We tested in how far epigenetic mechanisms regulate human monocytes heterogeneity in chronic kidney disease, which is a proinflammatory condition of substantial epidemiological importance. By applying next-generation Methyl-Sequencing (Methyl-Seq) we characterized genome-wide DNA methylation within the three monocyte subsets and analyzed the impact of uremia on DNA methylation in differentiating monocytes. We found that each monocyte subset displays a unique phenotype with regards to DNA methylation. Genes with differentially methylated promoter regions in intermediate monocytes were linked to distinct immunological processes, which is in line with results from recent gene expression analyses. In vitro, uremia induced a dysregulation of DNA methylation in differentiating monocytes which affected several transcription factors important for monocyte differentiation (e.g. FLT3, HDAC1, MNT) and led to enhanced generation of intermediate monocytes. As a potential mediator, the uremic toxin and DNA methylation inhibitor S-Adenosylhomocysteine induced shifts in monocyte subsets in vitro, and associated with monocyte subset counts in vivo. In summary, our data support the concept of monocyte trichotomy and the distinct role of intermediate monocytes in human immunity. The shift in monocyte subsets which occurs in chronic kidney disease, a proinflammatory condition of substantial epidemiological impact, may be induced by the accumulation of specific uremic toxins that mediate epigenetic dysregulation.
Project description:We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role.
Project description:Human blood monocytes comprise at least three subpopulations that differ in phenotype and function. Here we generated global maps of H3K4me1 and H3K27ac deposition for classical and nonclassical monocytes defining enhanceosomes of the two major subsets. In combination with HeliScopeCAGE data for all three subpopulations we identify differential regulatory elements (including promoters and putative enhancers) that were associated with subset-specific motif signatures corresponding to different transcription factor activities and exemplarily validate a novel downstream enhancer of the CD14 locus. ChIP-seq of 2 histone marks in "classical" CD14++CD16- and "nonclassical" CD14dimCD16+ human blood monocytes