Project description:DNA methylation is a central epigenetic modification that has essential roles in cellular processes including chromatin structure, gene regulation, development and disease. The de novo DNA methyltransferases are responsible for the generation of genomic methylation patterns, but the underlying mechanisms are still poorly understood. Here, we show that phosphorylation of DNMT3A by the CK2 protein kinase regulates the establishment of DNA methylation patterns. We find that DNMT3A is phosphorylated by CK2 at two key residues located near its PWWP domain. We observed that, through phosphorylation of these residues, CK2 negatively regulates DNMT3AM-bM-^@M-^Ys ability to methylate DNA and consistent with this, CK2 was found to decrease overall genomic level of 5-methylcytosine. Further, genome-wide DNA methylation analysis in CK2-depleted cells revealed that CK2 affects primarily CpG methylation of several heterochromatin repeats as well as Alu elements. Along these lines, we found that CK2-mediated phosphorylation of DNMT3A was required for its proper heterochromatin localization. Our results define phosphorylation as a new mode of regulation of de novo DNA methyltransferase function. These findings further uncover a previously unrecognized mechanism for the regulation of methylation at repetitive elements. They shed new light into the origin of DNA methylation patterns. Bisulphite converted DNA from 6 samples were hybridised to the Illumina Infinium 27K Human Methylation Beadchip v1.2
Project description:DNA methylation is a central epigenetic modification that has essential roles in cellular processes including chromatin structure, gene regulation, development and disease. The de novo DNA methyltransferases are responsible for the generation of genomic methylation patterns, but the underlying mechanisms are still poorly understood. Here, we show that phosphorylation of DNMT3A by the CK2 protein kinase regulates the establishment of DNA methylation patterns. We find that DNMT3A is phosphorylated by CK2 at two key residues located near its PWWP domain. We observed that, through phosphorylation of these residues, CK2 negatively regulates DNMT3A’s ability to methylate DNA and consistent with this, CK2 was found to decrease overall genomic level of 5-methylcytosine. Further, genome-wide DNA methylation analysis in CK2-depleted cells revealed that CK2 affects primarily CpG methylation of several heterochromatin repeats as well as Alu elements. Along these lines, we found that CK2-mediated phosphorylation of DNMT3A was required for its proper heterochromatin localization. Our results define phosphorylation as a new mode of regulation of de novo DNA methyltransferase function. These findings further uncover a previously unrecognized mechanism for the regulation of methylation at repetitive elements. They shed new light into the origin of DNA methylation patterns.
Project description:DNA methylation is a central epigenetic modification that has essential roles in cellular processes including chromatin structure, gene regulation, development and disease. The de novo DNA methyltransferases are responsible for the generation of genomic methylation patterns, but the underlying mechanisms are still poorly understood. Here, we show that phosphorylation of DNMT3A by the CK2 protein kinase regulates the establishment of DNA methylation patterns. We find that DNMT3A is phosphorylated by CK2 at two key residues located near its PWWP domain. We observed that, through phosphorylation of these residues, CK2 negatively regulates DNMT3A’s ability to methylate DNA and consistent with this, CK2 was found to decrease overall genomic level of 5-methylcytosine. Further, genome-wide DNA methylation analysis in CK2-depleted cells revealed that CK2 affects primarily CpG methylation of several heterochromatin repeats as well as Alu elements. Along these lines, we found that CK2-mediated phosphorylation of DNMT3A was required for its proper heterochromatin localization. Our results define phosphorylation as a new mode of regulation of de novo DNA methyltransferase function. These findings further uncover a previously unrecognized mechanism for the regulation of methylation at repetitive elements. They shed new light into the origin of DNA methylation patterns.
Project description:The DNA methylation program is at the bottom layer of the epigenetic regulatory cascade of vertebrate development. While the methylation at C-5 position of the cytosine (C) residues on the vertebrate genomes is achieved through the catalytic activities of the DNA methyltransferases (DNMTs), the conversion of the methylated cytosine (5mC) could be accomplished by the combined actions of the TET enzyme and DNA repair. Interestingly, it has been found recently that the mouse and human DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox condition-dependent manner. We report here the study of tracking down the fate of the methyl group removed from 5mC on DNA during in vitro demethylation reaction by mouse de novo DNMTs, i.e. DNMT3A and DNMT3B. Remarkably, the methyl group becomes covalently linked to the catalytic cysteines utilized by the two de novo DNMTs in their DNA methylation reactions. Thus, the forward and reverse reactions of DNA methylations by the DNMTs may utilize the same cysteine residue(s) as the active site despite of their distinctive pathways. Secondly, we demonstrate that active DNA demethylation of a heavily methylated GFP reporter plasmid by ectopically expressed DNMT3A or DNMT3B occurs in vivo in transfected human HEK 293 cells in culture. Furthermore, the extent of DNA demethylation by the DNMTs in this cell-based system is affected by Ca2+ homeostasis as well as by mutation of their putative active cysteines. These findings substantiate the roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation in vitro as well as in a cellular context.
Project description:The de novo DNA methyltransferase 3-like (Dnmt3L) is a catalytically inactive DNA methylase that has been previously shown to cooperate with Dnmt3a and Dnmt3b to methylate DNA. Dnmt3L is highly expressed in mouse embryonic stem cells (ESC) but its function in these cells is unknown. We here report that Dnmt3L is required for the differentiation of ESC into primordial germ cells (PGC) through activation of the homeotic gene Rhox5. By genome-wide analysis we found that Dnmt3L is a positive regulator of methylation at gene bodies of housekeeping genes and a negative regulator of methylation at promoters of bivalent genes. We demonstrate that Dnmt3L interacts with the Polycomb PRC2 complex in competition with the DNA methyl transferases Dnmt3a and Dnmt3b to maintain low the methylation level at H3H27me3 regions. Thus in ESC, Dnmt3L counteracts the activity of de novo DNA methylases to keep low the level of DNA methylation at developmental gene promoters. Examination of 5mC in shGFP and shDnmt3L ESC by MeDIP-Seq
Project description:CK2 is an essential protein kinase implicated in various cellular processes. In this study, we address a potential role of this kinase in chromatin modulations associated with transcription. We found that CK2 depletion from yeast cells leads to replication-independent increase of histone H3K56 acetylation and global activation of H3 turnover in coding regions. This suggests a positive role of CK2 in maintenance/recycling of the histone H3/H4 tetramers during transcription. Interestingly, strand-specific RNA-seq analyses show that CK2 inhibits global cryptic promoters driving both sense and antisense transcription. This further indicates a role of CK2 in the modulation of chromatin during transcription. Next, we showed that CK2 interacts with the major histone chaperone Spt6, and phosphorylates it in vivo and in vitro. CK2 phosphorylation of Spt6 is required for its cellular levels, for the suppression of histone H3 turnover and for the inhibition of spurious transcription. Finally, we show that CK2 and Spt6 phosphorylation sites are important to various transcriptional responses suggesting that cryptic intragenic and antisense transcript production may have an impact on cell adaptation to environmental cues. Altogether, our data indicate that CK2 mediated phosphorylation of Spt6 regulates chromatin dynamics associated with transcription, and prevents aberrant transcription.
Project description:CK2 is an essential protein kinase implicated in various cellular processes. In this study, we address a potential role of this kinase in chromatin modulations associated with transcription. We found that CK2 depletion from yeast cells leads to replication-independent increase of histone H3K56 acetylation and global activation of H3 turnover in coding regions. This suggests a positive role of CK2 in maintenance/recycling of the histone H3/H4 tetramers during transcription. Interestingly, strand-specific RNA-seq analyses show that CK2 inhibits global cryptic promoters driving both sense and antisense transcription. This further indicates a role of CK2 in the modulation of chromatin during transcription. Next, we showed that CK2 interacts with the major histone chaperone Spt6, and phosphorylates it in vivo and in vitro. CK2 phosphorylation of Spt6 is required for its cellular levels, for the suppression of histone H3 turnover and for the inhibition of spurious transcription. Finally, we show that CK2 and Spt6 phosphorylation sites are important to various transcriptional responses suggesting that cryptic intragenic and antisense transcript production may have an impact on cell adaptation to environmental cues. Altogether, our data indicate that CK2 mediated phosphorylation of Spt6 regulates chromatin dynamics associated with transcription, and prevents aberrant transcription.