Project description:rs09-10_fwa - wt vs mutants 09. Impact of loss of DNA methylation and small interference RNAs (siRNAs) in gene expression. Determination of the genes misregulated upon ectopic expression of the FWA imprinted gene. Mutants impaired for the DNA methylation maintenance pathway and RNA interference machinery were compared to mutants simultaneously impaired for both. Impact of FWA and SDC ectopic expression.
Project description:rs09-10_fwa - wt vs mutants 09. Impact of loss of DNA methylation and small interference RNAs (siRNAs) in gene expression. Determination of the genes misregulated upon ectopic expression of the FWA imprinted gene. Mutants impaired for the DNA methylation maintenance pathway and RNA interference machinery were compared to mutants simultaneously impaired for both. Impact of FWA and SDC ectopic expression. 15 dye-swaps. fwa-d, gain of function epimutation, gene knock-in (transgenic), gene knockout.
Project description:The diversity of small RNA-directed DNA methylation (RdDM) mechanisms have been underestimated due to the nearly complete transcriptional silencing of transposable elements (TEs) in the wt Col ecotype of Arabidopsis thaliana. In plants mutant for the SWI/SNF2 histone remodeler DDM1, TEs are globally activated due to loss of genome wide heterochromatin condensation. Activated TEs go through additional non-canonical forms of RdDM. However, the global targets of the non-canonical RdDM pathway are unidentified. In an attempt to identify and contrast the targets of canonical and non-canonical RdDM, we sequenced small RNAs from several RdDM mutants in either the TE-silent or the TE-active (ddm1) contexts. Examination of unopened flower bud small RNAs from wild type and various single or double mutant combinations, many of which have biological replicates. Small RNA sequences from wt Col, controls and other mutants shown in the study are available at GSE41755 and GSE57191.
Project description:The diversity of small RNA-directed DNA methylation (RdDM) mechanisms have been underestimated due to the nearly complete transcriptional silencing of transposable elements (TEs) in the wt Col ecotype of Arabidopsis thaliana. In plants mutant for the SWI/SNF2 histone remodeler DDM1, TEs are globally activated due to loss of genome wide heterochromatin condensation. Activated TEs go through additional non-canonical forms of RdDM. However, the global targets of the non-canonical RdDM pathway are unidentified. In an attempt to identify and contrast the targets of canonical and non-canonical RdDM, we sequenced small RNAs from several RdDM mutants in either the TE-silent or the TE-active (ddm1) contexts.
Project description:In Arabidopsis thaliana, four different DICER-LIKE (DCL) proteins have distinct, but partially overlapping functions in the biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs) from longer, non-coding precursor RNAs. To analyze the impact of different components of the small RNA (sRNA) biogenesis machinery on the transcriptome, we subjected dcl and other mutants impaired in sRNA biogenesis to whole-genome tiling array analysis. We compared both protein-coding genes and noncoding transcripts, including most pri-miRNAs, in two tissues and several stress conditions. We discovered distinct effects of dcl1, hyl1 and se mutations on the transcriptome, as well as a number of common genes affected in dcl1 and dcl2 dcl3 dcl4 triple mutants. Our results furthermore suggest that the DCL1 is not only involved in miRNA action, but can also contribute to silencing of certain transposons, apparently through an effect on DNA methylation. Together, our findings contribute to the knowledge of both specialization and overlap between different RNA silencing pathways.