Project description:The gene encoding aklavinone 11-hydroxylase of Streptomyces peucetius subsp. caesius ATCC 27952 was cloned and sequenced. The deduced amino acid sequence of the gene contains at least two common motifs of well-conserved amino acid sequences of several flavin-type bacterial hydroxylases. The hydroxylase gene is apparently transcribed from a single transcriptional start point. The phenotype of a dnrF mutant generated by gene disruption supports the idea that the dnrF gene encodes aklavinone 11-hydroxylase.
Project description:Daunorubicin and doxorubicin, two anthracycline polyketides produced by Streptomyces peucetius, are potent anticancer agents that are widely used in chemotherapy, despite severe side effects. Recent advances have highlighted the potential of producing improved derivatives with reduced side effects by incorporating L-rhodosamine, the N,N-dimethyl analogue of the native amino sugar moiety.
Project description:Two novel phytases have been characterized from Bifidobacterium pseudocatenulatum and Bifidobacterium longum subsp. infantis. The enzymes belong to a new subclass within the histidine acid phytases, are highly specific for the hydrolysis of phytate, and render myo-inositol triphosphate as the final hydrolysis product. They represent the first phytases characterized from this group of probiotic microorganisms, opening the possibilities for their use in the processing of high-phytate-content foods.
Project description:Salmonella enterica spp. are pathogenic bacteria commonly associated with food-borne outbreaks in human and animals. Salmonella enterica spp. are characterized into more than 2,500 different serotypes, which makes epidemiological surveillance and outbreak control more difficult. In this report, we announce the first complete genome and methylome sequences from two Salmonella type strains associated with food-borne outbreaks, Salmonella enterica subsp. enterica serovar Panama (ATCC 7378) and Salmonella enterica subsp. enterica serovar Sloterdijk (ATCC 15791).
Project description:Fusobacterium nucleatum, one of the major causative bacteria of periodontitis, is classified into five subspecies (nucleatum, polymorphum, vincentii, animalis, and fusiforme) on the basis of the several phenotypic characteristics and DNA homology. This is the first report of the draft genome sequence of F. nucleatum subsp. fusiforme ATCC 51190(T).
Project description:Here, we report the complete genome sequence of Campylobacter jejuni ATCC 35925, an avian isolate from Sweden. The genome gives insight into the ATCC 35925 strain's remarkable ability to tolerate copper and its permissiveness to plasmid transformation.
Project description:Fusobacterium necrophorum is a pathogenic Gram-negative, anaerobic bacterium. In this study, we present the first complete genome sequence of Fusobacterium necrophorum subsp. necrophorum ATCC 25286. These data provide a critical advancement in our understanding of virulence factors that could contribute to F. necrophorum pathogenesis in both human and livestock infections.
Project description:Streptomyces laurentii ATCC 31255 produces thiostrepton, a thiopeptide class antibiotic. Here, we report the complete genome sequence for this strain, which contains a total of 8,032,664 bp, 7,452 predicted coding sequences, and a G+C content of 72.3%.
Project description:Comparative genome analysis revealed seven uncharacterized genes, sven0909 to sven0915, adjacent to the previously identified chloramphenicol biosynthetic gene cluster (sven0916-sven0928) of Streptomyces venezuelae strain ATCC 10712 that was absent in a closely related Streptomyces strain that does not produce chloramphenicol. Transcriptional analysis suggested that three of these genes might be involved in chloramphenicol production, a prediction confirmed by the construction of deletion mutants. These three genes encode a cluster-associated transcriptional activator (Sven0913), a phosphopantetheinyl transferase (Sven0914), and a Na(+)/H(+) antiporter (Sven0915). Bioinformatic analysis also revealed the presence of a previously undetected gene, sven0925, embedded within the chloramphenicol biosynthetic gene cluster that appears to encode an acyl carrier protein, bringing the number of new genes likely to be involved in chloramphenicol production to four. Microarray experiments and synteny comparisons also suggest that sven0929 is part of the biosynthetic gene cluster. This has allowed us to propose an updated and revised version of the chloramphenicol biosynthetic pathway.