Project description:Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation (APA) During Hippocampal Long-Term Potentiation (LTP) [RNA-Seq]
Project description:Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation (APA) during hippocampal Long-Term Potentiation (LTP) [3'READS]
Project description:Cleavage factor I mammalian (CFIm) complex, composed of cleavage and polyadenylation specificity factor CPSF6, regulates alternative polyadenylation (APA). CPSF6 has a RS-like domain which plays role in protein -protein interactions. This interaction might have role in alternative polyadenylation site selection. The phosphorylation of RS- like domain might play role in protein -protein interaction and thus might have a role in alternative polyadenylation site selection. So we did mass specteroanalysis to analyse phosphorylation sites of RS-like domain of CPSF6.
Project description:Mediator complex is an integrative hub for transcriptional regulation. Here we show that Mediator regulates alternative mRNA processing via its Med23 subunit. Combining tandem affinity purification and mass spectrometry, we identified a number of mRNA processing factors that bind to a soluble recombinant Mediator subunit MED23 but not to several other Mediator components. One of these factors, hnRNP L, specifically interacts with MED23 in vitro and in vivo. Consistently, Mediator partially colocalizes with hnRNP L and the splicing machinery in the cell. Functionally Med23 regulates a subset of hnRNP L-targeted alternative splicing (AS) and alternative cleavage and polyadenylation (APA) events as shown by minigene reporters and exon array analysis. ChIP-seq analysis revealed that Med23 can regulate hnRNP L occupancy at their co-regulated genes. Taken together, these results demonstrate a crosstalk between Mediator and the splicing machinery, suggesting a novel mechanism for coupling mRNA processing to transcription. Examination of hnRNP L and H3K36me3 enrichment in sictrl and si23 Hela cells
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.