Project description:Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation (APA) During Hippocampal Long-Term Potentiation (LTP) [RNA-Seq]
Project description:Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation (APA) during hippocampal Long-Term Potentiation (LTP) [3'READS]
Project description:Cleavage factor I mammalian (CFIm) complex, composed of cleavage and polyadenylation specificity factor CPSF6, regulates alternative polyadenylation (APA). CPSF6 has a RS-like domain which plays role in protein -protein interactions. This interaction might have role in alternative polyadenylation site selection. The phosphorylation of RS- like domain might play role in protein -protein interaction and thus might have a role in alternative polyadenylation site selection. So we did mass specteroanalysis to analyse phosphorylation sites of RS-like domain of CPSF6.
Project description:Mediator complex is an integrative hub for transcriptional regulation. Here we show that Mediator regulates alternative mRNA processing via its Med23 subunit. Combining tandem affinity purification and mass spectrometry, we identified a number of mRNA processing factors that bind to a soluble recombinant Mediator subunit MED23 but not to several other Mediator components. One of these factors, hnRNP L, specifically interacts with MED23 in vitro and in vivo. Consistently, Mediator partially colocalizes with hnRNP L and the splicing machinery in the cell. Functionally Med23 regulates a subset of hnRNP L-targeted alternative splicing (AS) and alternative cleavage and polyadenylation (APA) events as shown by minigene reporters and exon array analysis. ChIP-seq analysis revealed that Med23 can regulate hnRNP L occupancy at their co-regulated genes. Taken together, these results demonstrate a crosstalk between Mediator and the splicing machinery, suggesting a novel mechanism for coupling mRNA processing to transcription. Examination of hnRNP L and H3K36me3 enrichment in sictrl and si23 Hela cells