Project description:Autophagy, involved in protein degradation and amino acid recycling, plays a key role in plant development and stress responses. However, the relationship between autophagy and phytohormones is unclear. We used diverse methods, including CRISPR/Cas9, UPLC-MS/MS, chromatin immunoprecipitation, electrophoretic mobility shift assays, and dual-luciferase assays to explore the molecular mechanism of strigolactones in regulating autophagy and the degradation of ubiquitinated proteins under cold stress in tomato. We show that cold stress induced the accumulation of ubiquitinated proteins. Mutants deficient in strigolactone biosynthesis were more sensitive to cold stress with a higher accumulation of ubiquitinated proteins, while treatment with the synthetic strigolactone analog GR245DS enhanced cold tolerance in tomato, with a higher accumulation of autophagosomes and transcripts of autophagy-related genes (ATGs), and a lower accumulation of ubiquitinated proteins. Meanwhile, cold stress induced ELONGATED HYPOCOTYL 5 (HY5) accumulation, which was triggered by strigolactones. HY5 further trans-activated ATG18a promoter, resulting in autophagy formation. Mutation of ATG18a compromised strigolactone-induced cold tolerance, followed by a decreased formation of autophagosomes and an increased accumulation of ubiquitinated proteins. These findings reveal that strigolactones positively regulate autophagy in an HY5-dependent manner and promote the degradation of ubiquitinated proteins under cold conditions in tomato.
Project description:Transcription regulation requires many protein interactions on chromatin, and only a subset of transcription factors have well-defined activation or repression domains. The Arabidopsis transcription factor HY5 controls critical growth-related gene expression programs during plant development, but it’s primary activity in regulating transcription remains unclear. To address this question, we generated constitutive repressor and activator HY5 fusion proteins to direct the expression of HY5 target genes. We used RNA-seq, ChIP-seq, and multiple phenotypes to demonstrate that HY5 depends on accessory factors to promote transcription and identify high confidence direct targets of HY5. We suggest that this strategy can be used broadly to define the transcription regulation activity and direct targets of transcription factors. Interestingly, this approach also revealed a mechanism by which HY5 promotes the accumulation of its own negative regulators. We show that HY5 directly regulates components of the COP1 E3-ubiquitin ligase complex, and by uncoupling this feedback loop we can induce partial de-etiolation in the dark. This provides a system by which plants can quickly repress growth upon light exposure. Lastly, we show that modulating this system can generate significant phenotypic diversity and provide proof of concept that these fusion proteins can modulate growth in tomato, opening a novel path toward selecting desirable traits in crop species.
Project description:We analysed the effect of cold priming on cold and high light regulation of gene expression. 5 days after the first cold treatment the primary stress response was widely reset. Then, a second (triggering) cold stimulus (24 h 4 °C) and a triggering high-light stimulus (2 h 800 µmol quanta m-2 s-1), which regulate many stress responsive genes in the same direction in naïve plants, caused widely specific and even inverse regulation of priming-responsive genes.
Project description:The transcription factor HY5 acts downstream of multiple families of the photoreceptors and promotes photomorphogenesis. Although it is well accepted that HY5 acts to regulate target gene expression, in vivo binding of HY5 to any of its target gene promoters has yet to be demonstrated. Here we used a chromatin immunoprecipitation procedure to verify suspected in vivo HY5 binding sites. We demonstrated that in vivo association of HY5 with promoter targets is not altered under distinct light qualities or during light-to-dark transition. Coupled with DNA chip hybridization using high density 60-nucleotide oligomer microarray that contains one probe for every 500 nucleotides over the entire Arabidopsis genome, we mapped genome wide in vivo HY5 binding sites. This analysis showed that HY5 binds preferentially to promoter regions in vivo and revealed over 3 thousand chromosomal sites as putative HY5 binding targets. HY5 binding targets tend to be enriched in the early light responsive genes and transcription factor genes. Our data thus supports a model in which HY5 is a high hierarchical regulator of the transcriptional cascades for photomorphogenesis. Keywords: ChIP-chip