Project description:Brown adipose tissue (BAT) is a thermogenic organ that dissipates stored energy as heat to maintain body temperature in infants and small mammals. This process may also provide protection from development of diet-induced obesity. We found that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, while potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibited reduced expression of BAT-related genes in peripheral white adipose tissue and accumulated significantly more fat than wild-type controls when fed a high fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and suggest that a decrease in peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice.
Project description:Chronic inflammation is one of the major players in the obesity related metabolic syndrome. However the various inflammatory mediators appear to promote insulin resistance directly or indirectly through their ability to induce the inflammatory cascade. Interleukin-15 (IL-15) is a pro-inflammatory cytokine that is involved in the pathogenesis of different autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease and type 1 diabetes. We postulated that as a pro-inflammatory cytokine, IL-15 promotes obesity during fat excess by promoting insulin resistance from tissues involved in energy metabolism. We used microarrays to characterize the gene expression profile of the brown adipose tissue of IL-15 mice under normal diet or diet enriched with the beta3-adrenergic agonist CL 316243 Total RNA obtained from adipose tissue of wt- or IL15-KO mice under normal diet or diet enriched with the beta3-adrenergic agonist CL 316243
Project description:Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue. Experiment Overall Design: Comparisons of white and brown pre- and mature-adiposytes
Project description:Autotaxin (ATX, Enpp2) is a secreted lysophospholipase D catalyzing the production of lysophosphatidic acid (LPA), a pleiotropic growth factor-like phospholipid. Upregulated ATX expression has been detected in various chronic inflammatory disorders and different types of cancer; among them increased ATX mRNA or immunohistochemical staining has been suggested in Hepatocellular carcinoma (HCC) patients. Conditional deletion of ATX/Enpp2 specifically from hepatocytes, in AlbEnpp2-/- mice, attenuated the DEN/CCl4-mediated HCC development in mice. To obtain mechanistic insights into the mode of action of the ATX/LPA axis in HCC development, we performed whole liver, genome wide expression profiling of DEN/CCl4-induced HCC upon the genetic deletion of Autotaxin (ATX) in AlbEnpp2-/- mice in comparison with DEN/CCl4-treated and untreated wt littermate mice.
Project description:The arrays were used to explore how parents’ obesity status influence their offspring’s weight. We randomly assigned three-week-old mice to two groups, one group receiving a high-fat diet (HFD), the other group receiving a control diet (chow). Adult females of both groups were mated to males fed with HFD or CD. F1 transcriptome assay data were created from four tissues (liver, epigonal visceral, inguinal subcutaneous, and interscapular brown adipose tissue) of male offspring in relation to their parents’ obesity status.
Project description:Imeglimin is a recently developed anti-diabetic drug that could concurrently promote insulin secretion and insulin sensitivity, while its mechanisms of action are not fully understood. Here we show that imeglimin administration could protect mice from high fat diet-induced weight gain with enhanced energy expenditure and attenuated whitening of brown adipose tissue. Imeglimin administration led to significant alteration of gut microbiota, which included an increase of Akkermansia genus, with attenuation of obesity-associated gut pathologies. Ablation of microbiota by antibiotic treatment partially abrogated the insulin sensitizing effects of imeglimin, while not affecting its actions on body weight gain or brown adipose tissue. Collectively, our results characterize imeglimin as a potential agent promoting energy expenditure and gut integrity, providing new insights into its mechanisms of action.
Project description:Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue. Keywords: In vitro differentiation
Project description:The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. We examined the role of EBF2 in beige fat cell biogenesis by comparing transcriptome in wildtype and EBF2-overexpressing mice in the adipose tissue. Four control replicates (wildtype) and four experimental replicates (Fabp4-Ebf2) mice were analyzed
Project description:The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tissue depots is associated with improved metabolic phenotypes. Thus, understanding the differences in cell biology and function of these different adipose cell types and depots may be critical to the development of new therapies for metabolic disease. Here, we found that BEN, a determination factor of brown fat function. BEN transgenic mice displayed increased energy expenditure, limited weight gain, and improved glucose tolerance in response to a high-fat diet. These results demonstrate that BEN is a cell-autonomous determinant of a brown fat function and thermogenesis.